2016, Número 2
<< Anterior Siguiente >>
Med Cutan Iber Lat Am 2016; 44 (2)
Carcinoma basocelular: biología molecular y nuevas dianas terapéuticas
Monserrat GMT, Domínguez CJJ, Conejo-Mir J
Idioma: Español
Referencias bibliográficas: 39
Paginas: 89-99
Archivo PDF: 359.52 Kb.
RESUMEN
El carcinoma basocelular es el tipo de cáncer más frecuente en el ser humano. La vía de señalización Hedgehog juega un papel crucial en el desarrollo del carcinoma basocelular tanto esporádico como en el síndrome del carcinoma basocelular nevoide o síndrome de Gorlin, así como en su agresividad local y capacidad metastatizante. En ambos tipos, existe una mutación de Patched 1 hasta en el 80% y de Smoothened hasta en el 20%, dando lugar a una activación de la familia de factores de transcripción GLI, que inducen la expresión de genes oncogénicos en el núcleo celular. En la actualidad se han desarrollado tratamientos y existen numerosas moléculas en estudio que inhiben la vía de señalización Hedgehog para la terapéutica del carcinoma basocelular. En este trabajo se expondrá la biología molecular del carcinoma basocelular así como los nuevos y posible futuros tratamientos inhibidores de la vía de señal Hedgehog.
REFERENCIAS (EN ESTE ARTÍCULO)
Epstein EH. Basal cell carcinomas: attack of the hedgehog. Nat Rev Cancer. 2008; 8: 743-754.
Athar M, Li C, Kim AL, Spiegelman VS, Bickers DR. Sonic hedgehog signaling in basal cell nevus syndrome. Cancer Res. 2014; 74: 4967-4975.
Erdem GU, Sendur MA, Ozdemir NY, Yazıcı O, Zengin N. A comprehensive review of the role of the hedgehog pathway and vismodegib in the management of basal cell carcinoma. Curr Med Res Opin. 2015; 31: 743-756.
Kasper M, Jaks V, Hohl D, Toftgård R. Review series Basal cell carcinoma - molecular biology and potential new therapies. J Clin Invest. 2012; 122: 455-463.
Wong SY, Dlugosz AA. Basal cell carcinoma, Hedgehog signaling, and targeted therapeutics: the long and winding road. J Invest Dermatol. 2014; 134: E18-22.
Chen JK, Taipale J, Cooper MK, Beachy PA. Inhibition of hedgehog signaling by direct binding of cyclopamine to smoothened service inhibition of hedgehog signaling by direct binding of cyclopamine to smoothened. Genes Dev. 2002; 16 (21): 2743-2748.
Sharpe HJ, Pau G, Dijkgraaf GJ, Basset-Seguin N, Modrusan Z, Januario T et al. Genomic analysis of smoothened inhibitor resistance in basal cell carcinoma. Cancer Cell. 2015; 27: 327-341.
Cooper MK, Porter JA, Young KE, Beachy PA. Teratogen-mediated inhibition of target tissue response to Shh signaling. Science. 1998; 280: 1603-1607.
Zhao Y, Tong C, Jiang J. Hedgehog regulates smoothened activity by inducing a conformational switch. Nature. 2007; 450: 252-258.
Karhadkar SS, Bova GS, Abdallah N, Dhara S, Gardner D, Maitra A et al. Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature. 2004; 431: 707-712.
Mimeault M, Johansson SL, Henichart JP, Depreux P, Batra SK. Cytotoxic effects induced by docetaxel, gefitinib, and cyclopamine on side population and nonside population cell fractions from human invasive prostate cancer cells. Mol Cancer Ther. 2010; 9: 617-630.
Fan Q, Gu D, He M, Liu H, Sheng T, Xie G, Li CX, Zhang X et al. Tumor shrinkage by cyclopamine tartrate through inhibiting hedgehog signaling. Chin J Cancer. 2011; 30: 472-481.
Sekulic A, Migden MR, Oro AE, Dirix L, Lewis KD, Hainsworth JD et al. Efficacy and safety of vismodegib in advanced basal-cell carcinoma. N Engl J Med. 2012; 366: 2171-2179.
Yauch RL, Dijkgraaf GJP, Alicke B, Januario T, Ahn CP, Holcomb T et al. Smoothened mutation confers resistance to a hedgehog pathway inhibitor in medulloblastoma. Science. 2009; 326: 572-574.
Metcalfe C, de Sauvage FJ. Hedgehog fights back: mechanisms of acquired resistance against smoothened antagonists. Cancer Res. 2011; 71: 5057-5061.
Catenacci DV, Junttila MR, Karrison T, Bahary N, Horiba MN, Nattam SR et al. Randomized phase IB/II study of gemcitabine plus placebo or vismodegib, a hedgehog pathway inhibitor, in patients with metastatic pancreatic cancer. J Clin Oncol. 2015; 33: 4284-4292.
Rhim AD, Oberstein PE, Thomas DH, Mirek ET, Palermo CF, Sastra SA et al. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell. 2014; 25: 735-747.
Sekulic A, Migden MR, Basset-Seguin N et al. Long-term safety and efficacy of vismodegib in patients with advanced basal cell carcinoma: final update (30-month) of the pivotal ERIVANCE BCC study. J Clin Oncol. 2014; 32 (Suppl; abstr 9013) 85s.
Basset-Seguin N, Hauschild A, Grob JJ et al. Vismodegib in patients with advanced basal cell carcinoma (STEVIE): a pre-planned interim analysis of an international, open-label trial. Lancet Oncol. 2015; 16: 729-736.
Tang JY, Mackay-Wiggan JM, Aszterbaum M, Yauch RL, Lindgren J, Chang K et al. Inhibiting the hedgehog pathway in patients with the basal-cell nevus syndrome. N Engl J Med. 2012; 366: 2180-2188.
Erivedge [package insert]. San Francisco, Calif: Genentech, Inc; 2012.
Pan S, Wu X, Jiang J, Gao W, Wan Y, Cheng D et al. Discovery of NVP-LDE225, a potent and selective smoothened antagonist. ACS Med Chem Lett. 2010; 1: 130-134.
R, D’Amato V, Formisano L, Nappi L, Raimondo L, Di Mauro C et al. Inhibition of hedgehog signalling by NVP-LDE22 5 (erismodegib) interferes with growth and invasion of human renal cell carcinoma cells. Br J Cancer. 2014; 111: 1168-1179.
Fu J, Rodova M, Nanta R, Meeker D, Van Veldhuizen PJ, Srivastava RK et al. NPV-LDE-225 (Erismodegib) inhibits epithelial mesenchymal transition and self-renewal of glioblastoma initiating cells by regulating miR-21, miR-128, and miR-200. Neuro Oncol. 2013; 15: 691-706.
Nanta R, Kumar D, Meeker D, Rodova M, Van Veldhuizen PJ, Shankar S, Srivastava RK. NVP-LDE-225 (Erismodegib) inhibits epithelial-mesenchymal transition and human prostate cancer stem cell growth in NOD/SCID IL2Rγ null mice by regulating BMI-1 and microRNA-128. Oncogenesis. 2013; 2: e42.
Tremblay MR, Lescarbeau A, Grogan MJ, Tan E, Lin G, Austad BC et al. Discovery of a potent and orally active hedgehog pathway antagonist (IPI-926). J Med Chem. 2009; 52: 4400-4418.
Olive KP, Jacobetz MA, Davidson CJ, Gopinathan A, McIntyre D, Honess D et al. Inhibition of hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science. 2009; 324: 1457-1461.
Tang T, Tang JY, Li D, Reich M, Callahan CA, Fu L et al. Targeting superficial or nodular basal cell carcinoma with topically formulated small molecule inhibitor of smoothened. Clin Cancer Res. 2011; 17: 3378-3387.
Riedlinger D, Bahra M, Boas-Knoop S, Lippert S, Bradtmöller M, Guse K et al. Hedgehog pathway as a potential treatment target in human cholangiocarcinoma. J Hepatobiliary Pancreat Sci. 2014; 21: 607-615.
Ohashi T, Oguro Y, Tanaka T, Shiokawa Z, Tanaka Y, Shibata S et al. Discovery of the investigational drug TAK-441, a pyrrolo[3,2-c]pyridine derivative, as a highly potent and orally active hedgehog signaling inhibitor: Modification of the core skeleton for improved solubility. Bioorg Med Chem. 2012; 20: 5507-5517.
Bender MH, Hipskind PA, Capen AR, Cockman M, Credille KM, Gao H et al. Abstract 2819: Identification and characterization of a novel smoothened antagonist for the treatment of cancer with deregulated hedgehog signaling. Cancer Research. 2011; 71: 2819.
Ally MS, Ransohoff K, Sarin K, Atwood SX, Rezaee M, Bailey-Healy I et al. Effects of combined treatment with arsenic trioxide and itraconazole in patients with refractory metastatic basal cell carcinoma. JAMA Dermatol. 2016; 152 (4): 452-456. doi: 10.1001/jamadermatol.2015.5473.
Chen B, Trang V, Lee A, Williams NS, Wilson AN, Epstein EH Jr et al. Posaconazole, a second-generation triazole antifungal drug, inhibits the Hedgehog signaling pathway and progression of basal cell carcinoma. Mol Cancer Ther. 2016; 28. pii: molcanther.0729.2015. [Epub ahead of print]
Hoch L, Faure H, Roudaut H, Schoenfelder A, Mann A, Girard N et al. MRT-92 inhibits hedgehog signaling by blocking overlapping binding sites in the transmembrane domain of the Smoothened receptor. FASEB J. 2015; 29: 1817-1829.
Lauth M, Bergström Å, Shimokawa T, Toftgård R. Inhibition of GLI-mediated transcription and tumor cell growth by small-molecule antagonists. Proc Natl Acad Sci USA. 2007; 104: 8455-8460.
You M, Varona-Santos J, Singh S, Robbins DJ, Savaraj N, Nguyen DM. Targeting of the Hedgehog signal transduction pathway suppresses survival of malignant pleural mesothelioma cells in vitro. J Thorac Cardiovasc Surg. 2014; 147: 508-516.
Pathi S, Pagan-Westphal S, Baker DP, Garber EA, Rayhorn P, Bumcrot D et al. Comparative biological responses to human sonic, Indian, and desert hedgehog. Mech Dev. 2001; 106: 107-117.
Petrova E, Matevossian A, Resh MD. Hedgehog acyltransferase as a target in pancreatic ductal adenocarcinoma. Oncogene. 2015; 34: 263-268.
Coon V, Laukert T, Pedone CA, Laterra J, Kim KJ, Fults DW. Molecular therapy targeting Sonic hedgehog and hepatocyte growth factor signaling in a mouse model of medulloblastoma. Mol Cancer Ther. 2010; 9: 2627-2636.