2016, Número 3
<< Anterior Siguiente >>
Neumol Cir Torax 2016; 75 (3)
El papel de la autofagia en enfermedades pulmonares
Maciel-Herrerías M, Cabrera-Benítez S
Idioma: Español
Referencias bibliográficas: 55
Paginas: 227-236
Archivo PDF: 332.92 Kb.
RESUMEN
La autofagia es un proceso fundamental de degradación intracelular de organelos y proteínas dañadas. La autofagia es también un mecanismo esencial para la adaptación al estrés, la supervivencia y la homeostasis celular. Paradójicamente, la autofagia también puede promover la muerte celular, pero cuándo y cómo la autofagia puede tener funciones pro o antiapoptóticas, es aún desconocido. La autofagia involucra el reclutamiento y la degradación de organelos dañados, agregados de proteínas, proteínas de larga vida y patógenos en vesículas de doble membrana llamadas autofagosomas, que luego se fusionan con los lisosomas para formar los autofagolisosomas (o autolisosomas). Alteraciones en la autofagia han sido implicadas en una amplia gama de trastornos, incluyendo enfermedades pulmonares. En esta revisión, se discute lo que al presente se sabe sobre el papel de la autofagia en el inicio y la progresión de diferentes trastornos pulmonares. Algunos estudios indican que la autofagia podría tener un papel deletéreo en la patogénesis de la enfermedad pulmonar obstructiva crónica y del asma. En otros trastornos como la fibrosis pulmonar idiopática y la fibrosis quística, la inhibición de la autofagia puede contribuir a la patogénesis.
REFERENCIAS (EN ESTE ARTÍCULO)
Rackley CR, Stripp BR. Building and maintaining the epithelium of the lung. J Clin Invest 2012;122(8):2724-2730. doi: 10.1172/JCI60519.
Whitsett JA, Alenghat T. Respiratory epithelial cells orchestrate pulmonary innate immunity. Nat Immunol 2015;16(1):27-35. doi: 10.1038/ni.3045.
Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature 2008;451(7182):1069-1075. doi: 10.1038/nature06639.
Wong E, Cuervo AM. Integration of clearance mechanisms: the proteasome and autophagy. Cold Spring Harb Perspect Biol 2010;2(12):a006734. doi: 10.1101/cshperspect.a006734.
Mizushima N, Yoshimori T, Ohsumi Y. The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 2011;27:107-132. doi: 10.1146/annurev-cellbio-092910-154005.
Quon BS, Rowe SM. New and emerging targeted therapies for cystic fibrosis. BMJ 2016;352:i859. doi: 10.1136/bmj.i859.
O’Sullivan BP, Freedman SD. Cystic fibrosis. Lancet 2009;373(9678):1891-1904. doi: 10.1016/S0140-6736(09)60327-5.
De Boeck K, Zolin A, Cuppens H, Olesen HV, Viviani L. The relative frequency of CFTR mutation classes in European patients with cystic fibrosis. J Cyst Fibros 2014;13(4):403-409. doi: 10.1016/j.jcf.2013.12.003.
Okumura MJ, Kleinhenz ME. Cystic fibrosis transitions of care: lessons learned and future directions for cystic fibrosis. Clin Chest Med 2016;37(1):119-126. doi: 10.1016/j.ccm.2015.11.007.
Esposito S, Tosco A, Villella VR, Raia V, Kroemer G, Maiuri L. Manipulating proteostasis to repair the F508del-CFTR defect in cystic fibrosis. Mol Cell Pediatr 2016; 3(1):13. doi: 10.1186/s40348-016-0040-z.
De Stefano D, Villella VR, Esposito S, et al. Restoration of CFTR function in patients with cystic fibrosis carrying the F508del-CFTR mutation. Autophagy 2014;10(11):2053-2074. doi: 10.4161/15548627.2014.973737.
Luciani A, Villella VR, Esposito S, et al. Targeting autophagy as a novel strategy for facilitating the therapeutic action of potentiators on DF508 cystic fibrosis transmembrane conductance regulator. Autophagy 2012;8(11):1657-1672. doi: 10.4161/auto.21483.
Luciani A, Villella VR, Esposito S, et al. Defective CFTR induces aggresome formation and lung inflammation in cystic fibrosis through ROS-mediated autophagy inhibition. Nat Cell Biol 2010;12(9):863-875.
Luciani A, Villella VR, Esposito S, et al. Cystic fibrosis: a disorder with defective autophagy. Autophagy 2011;7(1):104-106.
Abdulrahman BA, Khwk AA, Akhter A, et al. Depletion of the ubiquitin-binding adaptor molecule SQSTM1/p62 from macrophages harboring cftr DF508 mutation improves the delivery of Burkholderia cenocepacia to the autophagic machinery. J Biol Chem 2013;288(3):2049-2058. doi: 10.1074/jbc.M112.411728.
Assani K, Tazi MF, Amer AO, Kopp BT. IFN-γ stimulates autophagy-mediated clearance of Burkholderia cenocepacia in human cystic fibrosis macrophages. PLoS One 2014;9(5):e96681. doi: 10.1371/journal.pone.0096681
Junkins RD, Shen A, Rosen K, McCormick C, Lin TJ. Autophagy enhances bacterial clearance during P. aeruginosa lung infection. PLoS One 2013;8(8):e72263. doi: 10.1371/journal.pone.0072263.
Junkins RD, McCormick C, Lin TJ. The emerging potential of autophagy-based therapies in the treatment of cystic fibrosis lung infections. Autophagy 2014;10(3):538-547. doi: 10.4161/auto.27750.
Maurer K, Torres VJ, Cadwell K. Autophagy is a key tolerance mechanism during Staphylococcus aureus infection. Autophagy 2015;11(7):1184-1186. doi: 10.1080/15548627.2015.1058685.
Decreamer M, Janssens W, Miravitlles M. Chronic obstructive pulmonary disease. Lancet 2012;379(9823):1341-1351. doi: 10.1016/S0140-6736(11)60968-9.
Salvi SS, Barnes PJ. Chronic obstructive pulmonary disease in non-smokers. Lancet 2009;374(9691):733-743. doi: 10.1016/S0140-6736(09)61303-9.
Tetley TD. Inflammatory cells and chronic obstructive pulmonary disease. Curr Drug Targets Inflamm Allergy 2005;4(6):607-618.
Kirkham PA, Barnes PJ. Oxidative stress in COPD. Chest 2013;144(1):266-273. doi: 10.1378/chest.12-2664.
Demedts IK, Demoor T, Bracke KR, Joos GF, Brusselle GG. Role of apoptosis in the pathogenesis of COPD and pulmonary emphysema. Respir Res 2006;7(53):1-10.
Park JW, Ryter SW, Choi AM. Functional significance of apoptosis in chronic obstructive pulmonary disease. COPD 2007;4(4):347-353.
Yamada Y, Tomaru U, Ishizu A, et al. Decreased proteasomal function accelerates cigarette smoke-induced pulmonary emphysema in mice. Lab Invest 2015;95(6):625-634. doi: 10.1038/labinvest.2015.43.
Chillappagari S, Preuss J, Licht S, et al. Altered protease and antiprotease balance during a COPD exacerbation contributes to mucus obstruction. Respir Res 2015;16(85):1-9. doi: 10.1186/s12931-015-0247-x.
Chen ZH, Kim HP, Sciurba FC, et al. Egr-1 regulates autophagy in cigarette smoke-induced chronic obstructive pulmonary disease. PLoS One 2008;3(10):e3316. doi: 10.1371/journal.pone.0003316.
Kim HP, Wang X, Chen ZH, et al. Autophagic proteins regulate cigarette smoke-induced apoptosis: protective role of heme oxygenase-1. Autophagy 2008;4(7):887-895.
Chen ZH, Lam HC, Jin Y, et al. Autophagy protein microtubule-associated protein 1 light chain-3B (LC3B) activates extrinsic apoptosis during cigarette smoke-induced emphysema. Proc Natl Acad Sci U S A 2010;107(44):18880-18885. doi: 10.1073/pnas.1005574107.
Tran I, Ji C, Ni I, Min T, Tang D, Vij N. Role of cigarette smoke-induced aggresome formation in Chronic Obstructive Pulmonary Disease-Emphysema pathogenesis. Am J Respir Cell Mol Biol 2015;53(2):159-173. doi: 10.1165/rcmb.2014-0107OC.
Monick MM, Powers LS, Walters K, et al. Identification of an autophagy defect in smokers’ alveolar macrophages. J Immunol 2010;185(9):5425-5435. doi: 10.4049/jimmunol.1001603.
Taylor AE, Finney-Hayward TK, Quint JK, et al. Defective macrophage phagocytosis of bacteria in COPD. Eur Respir J 2010;35(5):1039-1047. doi: 10.1183/09031936.00036709.
Cloonan SM, Lam HC, Ryter SW, Choi AM. «Ciliophagy»: the consumption of cilia components by autophagy. Autophagy 2014;10(3):532-534. doi: 10.4161/auto.27641.
Lam HC, Cloonan SM, Bhashyam AR, et al. Histone deacetylase 6-mediated selective autophagy regulates COPD-associated cilia dysfunction. J Clin Invest 2013;123(12):5212-5230. doi: 10.1172/JCI69636.
Mariño G, Niso-Santano M, Baehrecke EH, Kroemer G. Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol 2014;15(2):81-94. doi: 10.1038/nrm3735.
Farooq MB, Walsh GM. Autophagy and asthma. Clin Exp Allergy 2016;46(1):7-9. doi: 10.1111/cea.12633.
Jyothula SS, Eissa NT. Autophagy and role in asthma. Curr Opin Pulm Med 2013;19(1):30-35. doi: 10.1097/MCP.0b013e32835b1150.
Martin LJ, Gupta J, Jyothula SS, et al. Functional variant in the autophagy related 5 gene promoter is associated with childhood asthma. PLoS One 2012;7(4):e33454. doi: 10.1371/journal.pone.0033454.
Poon AH, Chouiali F, Tse SM, et al. Genetic and histological evidence for autophagy in asthma pathogenesis. J Allergy Clin Immunol 2012;129(2):569-571. doi: 10.1016/j.jaci.2011.09.035.
Dickinson JD, Alevy Y, Malvin NP, et al. IL-13 activates autophagy to regulate secretion in airway epithelial cells. Autophagy 2016;12(2):397-409. doi: 10.1080/15548627.2015.1056967.
Ban GY, Pharm DL, Trinh THK, et al. Autophagy mechanisms in sputum and peripheral blood cells of patients with severe asthma: a new therapeutic target. Clin Exp Allergy 2016;46(1):48-59. doi: 10.1111/cea.12585.
Selman M, Pardo A. Revealing the pathogenic and aging-related mechanisms of the enigmatic idiopathic pulmonary fibrosis. an integral model. Am J Respir Crit Care Med 2014;189(10):1161-1172. doi: 10.1164/rccm.201312-2221PP.
Leung J, Cho Y, Lockey RF, Kolliputi N. The role of aging in idiopathic pulmonary fibrosis. Lung 2015;193(4):605-610. doi: 10.1007/s00408-015-9729-3.
Chilosi M, Carloni A, Rossi A, Poletti V. Premature lung aging and cellular senescence in the pathogenesis of idiopathic pulmonary fibrosis and COPD/emphysema. Transl Res 2013;162(3):156-173. doi: 10.1016/j.trsl.2013.06.004.
López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell 2013;153(6):1194-1217. doi: 10.1016/j.cell.2013.05.039.
Patel AS, Lin L, Geyer A, et al. Autophagy in idiopathic pulmonary fibrosis. PLoS One 2012;7(7):e41394. doi: 10.1371/journal.pone.0041394.
Araya J, Kojima J, Takasaka N, et al. Insufficient autophagy in idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2013;304(1):L56-L69. doi: 10.1152/ajplung.00213.2012.
Gui YS, Wang L, Tian X, et al. mTOR overactivation and compromised autophagy in the pathogenesis of pulmonary fibrosis. PLoS One 2015;10(9):e0138625. doi: 10.1371/journal.pone.0138625.
Parker MW, Rossi D, Peterson M, et al. Fibrotic extracellular matrix activates a profibrotic positive feedback loop. J Clin Invest 2014;124(4):1622-1635. doi: 10.1172/JCI71386.
Nho RS, Hergert P. IPF fibroblasts are desensitized to type I collagen matrix-induced cell death by suppressing low autophagy via aberrant Akt/mTOR kinases. PLoS One 2014;9(4):e94616. doi: 10.1371/journal.pone.0094616.
Clarke DL, Carruthers AM, Mustelin T, Murray LA. Matrix regulation of idiopathic pulmonary fibrosis: the role of enzymes. Fibrogenesis Tissue Repair 2013;6(1):20. doi: 10.1186/1755-1536-6-20.
Sosulski ML, Gongora R, Danchuk S, Dong C, Luo F, Sanchez CG. Deregulation of selective autophagy during aging and pulmonary fibrosis: the role of TGFβ1. Aging Cell 2015;14(5):774-783. doi: 10.1111/acel.12357.
Bueno M, Lai YC, Romero Y, et al. PINK1 deficiency impairs mitochondrial homeostasis and promotes lung fibrosis. J Clin Invest 2015;125(2):521-538. doi: 10.1172/JCI74942.
Cabrera S, Maciel M, Herrera I, et al. Essential role for the ATG4B protease and autophagy in bleomycin-induced pulmonary fibrosis. Autophagy 2015;11(4):670-684. doi: 10.1080/15548627.2015.1034409.