2016, Número 2
<< Anterior Siguiente >>
TIP Rev Esp Cienc Quim Biol 2016; 19 (2)
Burkholderia tropica una bacteria con gran potencial para su uso en la agricultura
Bolívar-Anillo, HJ, Contreras-Zentella ML, Teherán-Sierra LG
Idioma: Español
Referencias bibliográficas: 37
Paginas: 102-108
Archivo PDF: 1119.81 Kb.
RESUMEN
El género
Burkholderia con más de 90 especies reportadas hasta la fecha, se encuentra dividido en dos grupos mayores filogenéticamente distantes. El primer grupo se encuentra constituido por especies patógenas donde destacan los patógenos oportunistas referidos como el complejo Burkholderia cepacia (Bcc); el otro grupo está conformado por especies no patógenas con habilidades para la promoción del crecimiento vegetal y la rizoremediación.
Burkholderia tropica es una bacteria con capacidad de fijar nitrógeno; aislada de la rizósfera, rizoplano, tallo y la raíz de plantas de maíz y caña de azúcar. Además de su capacidad diazotrofa, B. tropica presenta características que permiten catalogarla como una bacteria promotora del crecimiento vegetal, por su capacidad de producir sideróforos, solubilizar fosfatos, producir exo-heteropolisacáridos, además de utilizarse como biocontrol para algunos fitoparásitos, lo que la convierte en una bacteria prometedora para su aplicación en el sector agrícola.
REFERENCIAS (EN ESTE ARTÍCULO)
Euzéby, J.P. List of prokariotic names with standing in nomenclature, 1997. [Online]. Available: http://www.bacterio.cict.fr/b/burkholderia.html. [Accessed: 19-Jun-2015].
Onofre-Lemus, J., Hernández-Lucas, I., Girard, L. & Caballero-Mellado, J. ACC (1-Aminocyclopropane-1-Carboxylate) Deaminase Activity, a Widespread Trait in Burkholderia Species, and Its Growth-Promoting Effect on Tomato Plants. Appl. Environ. Microbiol. 75, 6581–6590 (2009).
Salles, J.F., Samyn, E., Vandamme, P., Van Veen, J. & Van Elsas, J.D. Changes in agricultural management drive the diversity of Burkholderia species isolated from soil on PCAT medium. Soil Biol. Biochem. 38, 661–673 (2006).
Estrada-De Los Santos, P., Bustillos-Cristales, R. & Caballero-Mellado, J. Burkholderia, a Genus Rich in Plant-Associated Nitrogen Fixers with Wide Environmental and Geographic Distribution. Appl. Environ. Microbiol. 67, 2790–2798 (2001).
Caballero-Mellado, J. Microbiología agrícola e interacciones microbianas con plantas. Rev. Latinoam. Microbiol. 48, 154–155 (2006).
Reis, V.M, et al. Burkholderia tropica sp. nov., a novel nitrogenfixing, plant-associated bacterium. Int. J. Syst. Evol. Microbiol. 54, 2155–2162 (2004).
Yabuuchi, E., et al. Proposal of Burkholderia gen. nov. and Transfer of Seven Species of the Genus Pseudomonas Homology Group II to the New Genus, with the Type Species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol. Immunol. 36, 1251–1275 (1992).
Coenye, T. & Vandamme, P. Burkholderia: molecular microbiology and genomics. Horizon Bioscience, Wymondham, 2006.
Suárez-Moreno, Z., Caballero-Mellado, J. & Venturi, V. The new group of non-pathogenic plant-associated nitrogen-fixing Burkholderia. Shares a conserved quorum-sensing system, which is tightly regulated by the Rsal repressor. Microbiology 154, 2048–2059 (2008).
Angus, A. et al. Plant-Associated Symbiotic Burkholderia Species Lack Hallmark Strategies Required in Mammalian Pathogenesis. PLOS 9, 1-12 (2014).
Estrada-de los Santos, P., Vinuesa, P., Martínez-Aguilar, L., Hirsch, A. & Caballero-Mellado, J. Phylogenetic Analysis of Burkholderia Species by Multilocus Sequence Analysis. Curr. Microbiol. 67, 51–60 (2013).
Suárez-Moreno, Z.R. et al. Common Features of Environmental and Potentially Beneficial Plant-Associated Burkholderia. Microb. Ecol. 63, 249–266 (2012).
Speert, D.P. Advances in Burkholderia cepacia complex. Paediatr. Respir. Rev. 3, 230–235 (2002).
Vandamme, P. & Dawyndt, P. Classification and identification of the Burkholderia cepacia complex: Past, present and future. Syst. Appl. Microbiol. 34, 87–95 (2011).
Compant, S., Nowak, J., Coenye, T., Clément, C. & Ait Barka, E. Diversity and occurrence of Burkholderia spp. in the natural environment. FEMS Microbiol. Rev. 32, 607–626 (2008).
Estrada, P. et al. A N2-fixing endophytic Burkholderia sp. associated with maize plants cultivated in Mexico. Can. J. Microbiol. 48, 285–294 (2002).
Perin, L. et al. Diazotrophic Burkholderia species associated with field-grown maize and sugarcane. Appl. Environ. Microbiol. 72, 3103–3110 (2006).
Kavadia, A., Vayenas, D.V., Pavlou, S. & Aggelis, G. Dynamics of free-living nitrogen-fixing bacterial populations and nitrogen fixation in a two-prey-one-predator system. Ecol. Modell. 218, 323–338 (2008).
Reinhold-Hurek, B. & Hurek, T. Living inside plants: bacterial endophytes. Curr. Opin. Plant Biol. 14, 435–443 (2011).
Rosenblueth, M. & Martínez-Romero, E. Bacterial endophytes and their interactions with hosts. Mol. Plant. Microbe. Interact. 19, 827–837 (2006).
Poonguzhali, S., Madhaiyan, M. & Sa, T. Quorum-sensing signals produced by plant-growth promoting Burkholderia strains under in vitro and in planta conditions. Res. Microbiol. 158,287–294 (2007).
Ait Barka, E., Gognies, S., Nowak, J., Audran, J.-C. & Belarbi, A. Inhibitory effect of endophyte bacteria on Botrytis cinerea and its influence to promote the grapevine growth. Biol. Control 24, 135–142 (2002).
Martínez-Aguilar, L. et al. Multichromosomal genome structure and confirmation of diazotrophy in novel plant-associated Burkholderia species. Appl. Environ. Microbiol. 74, 4574–4579 (2008).
Rees, D.C. et al. Structural basis of biological nitrogen fixation. Philos. Trans. R. Soc. London A Math. Phys. Eng. Sci. 363, 971–984 (2005).
Palleroni, N.J. & Genius, I. Pseudomonas Migula 1894. In: Krieg, N.R. & Holt, J.G. (eds.). Bergey´s Manual of Systematic Bacteriology. Baltimore: Williams & Wilkins (1984). págs. 141-199.
Herridge, D.F., Peoples, M.B. & Boddey, R.M. Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311, 1–18 (2008).
Soto-Urzúa, L. & Baca, B.E. Mecanismos de protección de la nitrogenasa a la inactivación por oxígeno. Rev. Latinoam. Microbiol. 43, 37–49 (2001).
Caballero-Mellado, J., Onofre-Lemus, J., Estrada-De Los Santos, P. & Martínez-Aguilar, L. The tomato rhizosphere, an environment rich in nitrogen-fixing Burkholderia species with capabilities of interest for agriculture and bioremediation. Appl. Environ. Microbiol. 73, 5308–5319 (2007).
Chen, Y.P. et al. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl. Soil Ecol. 34, 33–41 (2006).
Rodríguez, H. & Fraga, R. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 17, 319–339 (1999).
Pereira, S. I. A. & Castro, P. M. L. Phosphate-solubilizing rhizobacteria enhance Zea mays growth in agricultural P-deficient soils. Ecological Engineering 73, 526–535 (2014).
Serrato, R.V. et al. Structural characterization of an acidic exoheteropolysaccharide produced by the nitrogen-fixing bacterium Burkholderia tropica. Carbohydr. Polym. 73, 564–572 (2008).
Serrato, R.V. et al. Culture conditions for the production of an acidic exopolysaccharide by the nitrogen-fixing bacterium Burkholderia tropica. Can. J. Microbiol. 52, 489–493 (2006).
Vial, L., Marie-Christine, G., Valérie, D. & Eric, D. Burkholderia diversity and versatility: An investory of the extracellular products. J. Microbiol. Biotechnol. 17, 1407–1429 (2007).
Radzki, W. et al. Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture. Antonie van Leeuwenhoek, Int. J. Gen. Mol. Microbiol. 104, 321–330 (2013).
Tenorio-Salgado, S., Tinoco, R., Vázquez-Duhalt, R., Caballero- Mellado, J. & Pérez-Rueda, E. Identification of volatile compounds produced by the bacterium Burkholderia tropica that inhibit the growth of fungal pathogens. Bioengineered 4, 236–243 (2013).
Omarjee, J., Balandreau, J., Spaull, V.W. & Cadet, P. Relationships between Burkholderia populations and plant parasitic nematodes in sugarcane. Appl. Soil Ecol. 39, 1–14 (2008).