2015, Número 3
<< Anterior Siguiente >>
Rev Cubana Med Trop 2015; 67 (3)
Actividad insecticida de aceite de trementina modificado en Culex quinquefasciatus y Aedes albopictus (Diptera:Culicidae)
Leyva SM, French PL, Marquetti FMC, Montada DD, Santos HD, Hernandez MA, Tacoronte MJE
Idioma: Español
Referencias bibliográficas: 40
Paginas:
Archivo PDF: 276.78 Kb.
RESUMEN
Introducción: el estudio de alternativas naturales para el control vectorial es de gran
importancia debido a los fenómenos de resistencia a insecticidas sintéticos encontrados
en diversas especies de mosquitos.
Objetivo: evaluar la actividad insecticida de aceite de trementina modificado en
Culex quinquefasciatus y
Aedes albopictus.
Métodos: se evaluó la actividad larvicida, adulticida e inhibidora del desarrollo de este aceite, según metodologías estandarizadas. Se utilizó para el estudio una cepade
Cx.
quinquefasciatus (Regla 2013) y una de
Ae. albopictus (Fraga 2012).
Resultados: el aceite de trementina modificado mostró actividad larvicida para
Cx.
quinquefasciatus y
Ae. albopictus lo que se evidenció por los valores bajos de
concentraciones letales que causaron el 90% de mortalidad (CL
90 = 0,0054% y CL
90 = 0,00115%), en orden. Al evaluar la actividad adulticida se obtuvo el 100% de derribo a los 30 minutosde los individuos expuestos de ambas cepas a la concentración de 60
mg/mL. Al exponer larvas a sus respectivas CL
90 del aceite de trementina modificado,
se observó en
Cx. quinquefasciatus una mortalidad 2 veces mayor en la fase de larva
que en la fase de pupa. Durante los primeros 5 días la mortalidad fue mayor en los
estadios pupa y adulto en
Ae. Albopictus. Sin embargo, los resultados difieren con
Cx. quinquefasciatus en el mismo período. El sexo femenino fue prevaleciente en la
mortalidad pupal. La mayor mortalidad en adultos se observó en machos, por lo que
ocurrió una desproporción en los sexos de los sobrevivientes.
Conclusiones: los resultados encontrados avalan y permiten recomendar el aceite de
trementina modificado como un insecticida de origen natural para el control de
Ae. albopictus y
Cx. quinquefasciatus.
REFERENCIAS (EN ESTE ARTÍCULO)
Hotez PJ, Remme JHF, Buss P, Alleyne G, Morel C, Breman JG, et al. Combating tropical infectious diseases: report of the disease control priorities in developing countries project. Clin Infect Dis. 2004;38:871–8.
Bisset JA, Rodríguez MM, Ricardo Y, Ranson H, Perez O, Moya M, et al. Temephos resistance and esterase activity in the mosquito Aedes aegypti in Havana, Cuba increased dramatically between 2006 and 2008. Med. Vet. Entomol. 2011;25:233-9.
Rodríguez MM, Bisset JA, Pérez O, Montada D, Moya M, Ricardo Y, et al. Estado de la resistencia a insecticidas y sus mecanismos enAedes aegypti en el municipio Boyeros. Rev. Cubana Med Trop. 2009[citado 4 de enero de 2015];61(2). Disponible en: http://blue/bvs1/rcmt/2009/v61n2/mtr10209.pdf
Rodríguez MM, Bisset JA, Ricardo Y, Pérez O, Montada D, Figueredo D, et al. Resistencia a insecticidas organofosforados en Aedes aegypti (Diptera: Culicidae) de Santiago de Cuba, 1997-2009. Rev Cubana Med Trop. 2010;62(3):217-23.
Montada D, Dieguez L, Llambias JJ, Bofill LM, Codina A, Menendez S, et al. Tratamiento con K-Othrine WG 250 (deltametrina) En un área con alta infestación de Aedes aegypti. Rev Cubana Med Trop. 2012:64(3)221-3.
Montada D Bisset JA, Lezcano D, Castex M, Leyva M, San Blas O, et al. Efectividad del Sipertrin 5 SC en el control de Aedes aegypti en Santa Clara Villa Clara. Rev Cubana Med Trop. 2013;65(3):350-360.
WHO. Pesticides and their application for the control of vectors and pests of public health importance, 6th edn. Geneva: WHO; 2006.
Hafeez F, Akram W, Shaalan EA. Mosquito larvicidal activity of citrus limonoids against Aedes albopictus. Parasitol Res. 2011;109(1):221-9.
Mathew J, Thoppil JE. Chemical composition and mosquito larvicidal activities of Salvia essential oils. Pharm Biol. 2009;49(5):456-63.
Noleto Diaz C, Fernandez D. Essential oils and their compounds as Aedes aegypti L (Díptera Culicidae) larvicides: review. Parasitol Res; 2013.DOI 10.1007/s00436-013- 3687-6.
Pitarokili D, Michaelakis A, Koliopoulos G, Giatropoulos A, Tzakou O. Chemical composition, larvicidal evaluation, and adult repellency of endemic Greek Thymus essential oils against the mosquito vector of West Nile virus. Parasitol Res. 2011;109(2):425-430.
Rattan RS. Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Protection; 2010.
Leyva M, Marquetti MC, French L, Montada D,Tiomno O, Tacoronte JE, et al. Efecto de un aceite de trementina obtenido de Pinus tropicalis Morelet 1851sobre la biología de una cepa de Aedes (Stegomyia) aegyptiLinnaeus 1762 resistente a insecticidas Anales de Biologia.España: Universidad Murcia. 2013;35:75-84.
Leyva M, Marquetti MC, Tacoronte JE, Scull R, Tiomno O, Mesa A, et al. Actividad larvicida de aceites esenciales de plantas contra Aedes aegypti (L) (Díptera: Culicidae) Rev Biomed. 2009;20(1):5-13.
Leyva M, Marquetti MC, Tacoronte JÁ, Tiomno O, Montada D. Efecto inhibidor del aceite de trementina sobre el desarrollo de larvas deAedes aegypti (Diptera: Culicidae) Rev Cubana Med.Trop.2010[citado: 4 de enero de 2015];62(3). Disponible en: http://blue/bvs1/rcmt/2010/v62n3/mtr08310.pdf
Pérez O, Bisset JA, Leyva M, Rodríguez J, Fuentes O, García I, et al. Manual de Indicaciones Técnicas para Insectarios. Cuba: Editorial Ciencias Médicas; 2004. p. 16- 53.
WHO. Instructions for determining the susceptibility or resistance of adult mosquitoes to organochlorine, organophosphate and carbamates insecticides. Diagnostic test. WHO; 1981.
Organización Mundial de Salud. Instrucciones para determinar la susceptibilidad o resistencia a insecticidas en larvas de mosquito. WHO; 1981.
Center for Disease Control and Prevention(CDC). Guideline for Evaluating Insecticide Resistance in Vectors Using the CDC Bottle Bioassay. In: Brogdon G, Chan BH. (eds.). CDC; 2010.
Bisset LJ, Navarro OA, Marquetti MC, Mendizabal ME, González BM. Abundancia larval de mosquitos urbanos durante la campaña de erradicación del Aedes aegypti (Linnaeus, 1762) y dengue en Cuba (1981-1982). Rev. Cubana Med Trop. 1985;37:161-8.
Marquetti MC, Bisset J, Leyva M, García A, Rodríguez R. Comportamiento estacional y temporal de Aedes aegypti y Aedes albopictus en La Habana, Cuba. Rev Cubana Med Trop. 2007:59(1): Disponible en:http://blue/bvs1/rcmt/2007/v60n1/mtr09108.htm
Rodríguez MM, Bisset JA, Rodríguez I, Díaz C. Determinación de la resistencia a insecticidas y sus mecanismos bioquímicos en 2 cepas de Culex quinquefasciatus procedentes de Santiago de Cuba. Rev Cubana Med Trop. 1997;49(3):209-14.
Rodríguez MM, Bisset JA, Díaz C, Soca A. Selección de una cepa de Culex quinquefasciatus resistente a lambdacialotrina y su espectro de resistencia cruzada a otros insecticidas. Rev Cubana MedTrop. 1998;50(2):129-32.
González R, Marro E. Aedes albopictus in Cuba. J Am Mosq Control Assoc. 1999:15:569-70.
Marquetti MC, Saint Jean Y, Fuster Callaba CA, Somarriba López L.The first report of Aedes (Stegomyia)albopictus in Haiti. Mem. Inst. Oswaldo Cruz. 2012;107(2):279- 81.
Marquetti MC, Fuster CA, Estévez G, Somarriba L. Estudio descriptivo de la distribución y positividad larvaria de Aedes aegypti (Diptera: Culicidae) en Haití. Rev Biomédica. 2011;22:3.
Dhiman S, Rabha B, Yadav K, Baruah I, Veer V. Insecticide susceptibility and dengue vector status of wildStegomyia albopicta in a strategically important area of Assam, India. Parasit Vectors. 2014;7(1):295. doi: 10.1186/1756-3305-7-295.
Pocquet N, Darriet F, Zumbo B, Milesi P, Thiria J, Bernard V, et al. Insecticide resistance in disease vectors from Mayotte: an opportunity for integrated vector management. Parasit Vectors. 2014;7(1):299. doi: 10.1186/1756-3305-7-299.
Gonzalez-Broche R. Culícidos de Cuba. Instituto Cubano del Libro. La Habana: Editorial Científico Técnica; 2006.
Babu SR, Subrahmanyam B. Bio-potency of serine proteinase inhibitors from Acacia senegal seeds on digestive proteinases, larval growth, and development of Helicoverpa armigera (Hübner). Pest Biochem Physiol. 2010;98:349–58.
Macedo MLR, Freire MGM, Silva MBR, Coelho LCBB.Insecticidal action of Bauhinia monandra leaf lectin (BmoLL) against Anagasta kuehniella (Lepidoptera: Pyralidae), Zabrotes subfasciatus, and Callosobruchus maculatus (Coleoptera: Bruchidae). Comp Biochem Physiol A.2007;146:486–98.
Napoleão TH, Pontual EV, Lima TA, Santos NDL, Coelho LCBB, Navarro DMAF, et al. Effect of Myracrodruon urundeuva leaf lectin on survival and digestive enzymes of Aedes aegypti larvae. Parasitol Res. 2012;110:609–16.
Zahran HEl-Din M, Abdelgaleil SAM. Insecticidal and developmental inhibitory properties of monoterpenes onCulex pipiens L. (Diptera: Culicidae) Journal of Asia- Pacific Entomology. 2011;14:46–51.
Céspedes C, Molina SC, Muñoz E, Lamilla C, Alarcon J, Palacios SM, et al.The insecticidal, molting disruption and insect growth inhibitory activity of extracts from Condalia microphylla Cav. (Rhamnaceae) Industrial Crops and Products. 2013;42:78– 86.
Hidayatulfathi O, Sallenhuddin S, Ibrahim J. Adulticidal activity of some Malaysian plant extracts againstAedes aegypti. J Trop Biomed. 2004;21(2):61-7.
Dua VK, Pandey AC, Dash AP. Adulticidal activity of essential oil Lantana camara leaves against mosquitoes. Idian J Med Res. 2010:131:434-39.
Kamaraj Ch, Rahuman AA. Larvicidal and adulticidal potential of medicinal plant extracts from south Indian against vectors. Asian Pacific Journal of Tropical Medicine. 2010:948-53.
Govindarajan M, Sivakumar R. Adulticidal and repellent properties of indigenous plant extracts against Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae) Parasitol Res. 2012;110:1607-20.
Elango G, Rahuman A, Kamaraj C, Bagavan A, Zahir A. Adult emergence inhibition and adulticidal activity of leaf crude extracts against Japanese encephalitis vector, Culex quinquefascitus. Journal of King Saud University Sicence. 2012;24:73- 80.
Da Silva AC, Lagos K, Maia FC, Vilmar L, Tadei W, Pohlit AM, et al. Adulticidal activity of dillapiol and semisynthetic derivatives of dillapiol against Aedes aegypti (L). Journal of Mosquito Research. 2012;2(1):1-7.