2016, Número 2
<< Anterior Siguiente >>
Rev Mex Anest 2016; 39 (2)
Retraso en el despertar postanestésico
Mendoza-Popoca CÚ, Suárez-Morales M
Idioma: Español
Referencias bibliográficas: 43
Paginas: 142-151
Archivo PDF: 289.10 Kb.
RESUMEN
El retraso en el despertar postanestésico, es un problema complejo y una preocupación tanto para el anestesiólogo como para el resto del equipo quirúrgico. Este fenómeno habitualmente es multifactorial y su origen se puede agrupar en los siguientes apartados: factores propios del paciente, acción de los fármacos, aspectos metabólicos y correlación con aspectos quirúrgicos. A pesar de que la evolución tecnológica y la investigación han permitido ir conociendo cada vez más claramente las áreas del sistema nervioso central responsables del ciclo despierto-dormido fisiológico y su paralelismo con el estado anestésico, aún quedan muchos aspectos por dilucidar al respecto. Además de lo anteriormente mencionado, es muy importante conocer las interacciones que pueden existir entre los diferentes fármacos utilizados en tratamientos previos del paciente con los anestésicos y los medicamentos coadyuvantes empleados durante la anestesia, lo cual puede dar como resultado un retraso en el despertar. Esta contingencia representa un reto para el anestesiólogo en su práctica diaria por lo que es conveniente que esté preparado para su diagnóstico y tratamiento.
REFERENCIAS (EN ESTE ARTÍCULO)
Mashour GA, Orser BA, Avidan MS. Intraoperative awareness. From neurobiology to clinical practice. Anesthesiology. 2011;114:1218-1233.
Moruzzi G, Magoun HW. Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol. 1949;1:455-473.
Nixon JP, Mavanji V, Butterick TA, Teske JA. Sleep disorders, obesity and aging: the role of orexin. Aging Res Rev. 2015;20:63-73. doi: 10.1016/j.arr.2014.11.001.
Greenfield SA, Collins TFT. A neuroscientific approach to consciousness. In: Progress in brain research, V 150. 2005. Cap 2. 11-21.
Imas OA, Ropella KM, Wood JD, Hudetz AG. Isoflurane disrupts anterior-posterior phase synchronization of flash-induced field potentials in the rat. Neurosci Lett. 2006;402:216-221.
Sporns O. Structures and function of complex brain networks. 2013;15:247-261.
Kushikata T, Hirota K. Mechanisms of anesthetic emergence: evidence for active reanimation. Curr Anesthesiol Rep. 2014;4:49-56.
Lee DK, Albershardt DJ,Cantor RS. Exploring the mechanism of general anesthesia:kinetic analysis of GABA A receptor electrophysiology. Bioph J. 2015;108:1081-1093.
Brown RE, McKeena. Turning a negative into a positive: ascending GABAergic control of cortical activation and arousal. Frontiers in Neurology. 2015;6:135. doi: 10.3389/fneur.2015.00135.
Leung SL, Luo T, Ma J, Herrick A. Brain areas that influence general anesthesia. J Pneurobio. 2014;122:24-44.
Vazey EM, Aston-Jones G. Designer receptor manipulations reveal a role of the locus coeruleus noradrenergic system in isoflurane general anesthesia. PNAS. 2014;111:3859-3864.
Zhang Y, Yu T, Yuan J, Yu B. The ventrolateral preoptic nucleus is required for propofol-induced inhibition of locus coeruleus neuronal activity. Neurol Sci. 2015: doi: 10.1007/s10072-015-2292-0.
Akeju O, Loggia ML, Catana C, Pavone K, et al. Disruption of thalamic functional connectivity is a neural correlate of dexmedetomidine-induced unconsciousness. eLife 2014;3:e04499.
Tassonyi E, Charpantier E, Muller D, Dumont L, Bertrand D. The role of nicotinic acetylcholina receptors in the mechanisms of anesthesia. Br. Res Bull. 2002;57:133-150.
Mashour GA. Consciousness, anesthesia and neural synchrony. Anesthesiology. 2013;119:7-9.
Lee U, Ku S, Noh G, Baek S, Choi B, Mashour GA. Disruption of fronto-parietal communication by ketamine, propofol and sevoflurane. Anesthesiology. 2013;118:1264-1275.
Lee H, Mashour GA, Noh GJ, et al. Reconfiguration of network hub estructure after propofol-induced unconsciousness. Anesthesiology. 2013;119:1347-1356.
Shin J, Mashour GA, Ku S, et al. Subgraph “backbone” analysis of dynamic brain networks during consciousness and anesthesia. PLOS ONE. 2013;8:370899.
Dickstein DL, Kabaso D, Rocher AB, et al. Changes in the structural complexity of the aged brain. Aging Cell. 2007;6:275.
Zhang L, Li Z, Tong L, Guo C, Niu JY, et al. Orexin-A facilitates emergence from propofol anesthesia in rats. Anesth Analg. 2012;115:789-786.
Wang Z,Ni X, Li J, Xiuao Y, Wang C, Zhang Li, et al. Changes in plasma Orexin – A levels in sevoflurane-remifentanil anesthesia in young and ederly patients undergoing elective lumbar surgery. Anesth Analg. 2014;118:818-821.
Chemali JJ, Kenny JD, Olutola O, et al. Ageing delays emergence from general anesthesia in rats by increasing anaesthetic sensitivity in the brain. Br J Anaesth. 2015:115 (Suppl 1):i58-i65.
Mistacki A, Skrzypzak-Zielinska M,Tamowicz B, et al. The impact of genetic factor on response to anaesthetics. Adv Med Sci. 2013;58:9-14.
Rieder MJ, Carleton B. Pharmacogenomics and adverse drug reactions in children. Front Genet. 2014;16:5-78.
Friedman EB, Sun Y, Moore JT, Hung HT, Meng QC, et al. A conserved behavioral state barrier impedes transitions between anesthetic-induced unconsciousness and wakefulness: evidence for neural inertia. PloS ONE. 2010;5:e11903. doi:10.1371/journal.pone.0011903.
Langsjö JW, Alkire MT, Kaskineoro K, et al. Returning from oblivion: imagening the neural core of consciousness. J of Neuroscience. 2012;32:4935-4943.
Lemmens HJ. Perioperative pharmacology in morbidly obese. Curr Opin Anaesthesiol. 2010;(4):485-491.
Nightingale CE, Margarson MP, Shearer E, Redman JW. Peri-operative management of the obese surgical patient 2015. Anaesthesia. 2015;70:859-876.
Kaye A, Hollon Mc, Vadivelu N, Kodumudi G, Kaye RJ, Rivera F, Baluch A. Postoperative apnea, respiratory strategies, and pathogenesis mechanisms: a review. J Anesth. 2013;27:423-432.
Goodwin G, Joseph V. Neuromuscular blockers. In: Kaye AD, Kaye AM, Urman RD eds. Essentials of pharmacology for anesthesia, pain medicine and critical care. 2015. Ch 12: 195-204. Springer N.Y.
Coetzee JF. Principles of intravenous drug infusion. Anaesthesia & Intensive Care Medicine. 2012;13:243-246.
Leeson S, Russell R, James P. Hypoventilation after inhaled anesthesia results in reanesthetization. Anest Analg. 2014;119:829-835.
Carrillo ER, Ramírez FJ, Garnica MA, Méndez JA, Esquivel S, Rocha MA, Carrillo CA. Síndrome anticolinérgico. Rev Invest Med Sur Mex. 2012;19:244-249.
Lagi A, Cencetti S, Lagi F. Incidence of hypoglycaemia associated with transient loss of consciousness. A retrospective cohort study. Int J Clin Pract. 2014;68:1029-1033.
Song E, Chu K, Jeong S, et al. Hyperglycemia exacerbates brain edema and perihematomal cell death after intracerebral hemorrhage. Stroke. 2003;34:2215-2220.
Adrogué H, Madias NE. Hyponatremia. NEJM. 2000;342:1581-1589.
Lenhart R, Marker E, Goll V, Tschernich H, et al. Mild intraoperative hypothermia prolongs postanesthetic recovery. Anesthesiology. 1997;87:1318-1323.
Lee H, Kim KS, Jeong JS,Kim KN, Lee BC. The influence of mild hypothermia on reversal of rocuronium-induced deep neuromuscular block with sugammadex. BMC Anesthesiology. 2015;15:1-7.
Hoetzel A, Ryan H, Schmidt R. Anesthetic considerations for the patient with liver disease. Curr Opin Anesthesiol. 2012;25:340-347.
Kumeresan A, Kasper E, Bose R. Anesthetic management of supratentorial tumors. Inter Anesth Clin. 2015;53:74-86.
Grover VK, Tewari MK, Mahajav R. Cranial surgery: impact of tumour size and location on emergence from anesthesia. J Anesth Clin Pharmacol. 2007;23:263-268.
Lüders H, Amina S, Benbadis, Bermeo A, et al. Proposal: different types of alteration and loss of consciousness in epilepsia. Epilepsia. 2014;55:1140-1144.
Lam AM, Kianpour D. Monitoring for carotid endarterectomy: more or less? Anesth Analg 2015;120:1186-1188.