2005, Número 2
<< Anterior Siguiente >>
Arch Neurocien 2005; 10 (2)
Mecanismos de muerte neuronal asociados a la hipoglucemia
Haces BML, Massieu-Trigo L
Idioma: Español
Referencias bibliográficas: 51
Paginas: 83-91
Archivo PDF: 103.85 Kb.
RESUMEN
La concentración fisiológica de la glucosa sanguínea en los humanos (80-90 mg/dl) se mantiene en este ran-go a través de mecanismos sistémicos altamente regulados. Cuando estos mecanismos no operan ade-cuadamente, la glucosa sanguínea disminuye dando lugar a un estado de hipoglucemia. La disminución de glucosa por debajo de los 20 mg/dl induce un estado de coma hipoglucémico caracterizado por el cese
o aplanamiento de la actividad cerebral eléctrica. Dicho estado puede revertirse a través de la administración intravenosa de glucosa. Como consecuencia de un epi-sodio hipoglucémico ocurre daño neuronal debido a que el cerebro es altamente dependiente del aporte sanguíneo de glucosa; la cual es la fuente de energía principal necesaria para su correcto funcionamiento. Una gran variedad de funciones celulares se alteran en condiciones de deficiencia energética; como tales: el mantenimiento de los gradientes iónicos, la liberación y recaptura de neurotransmisores, la regulación de la concentración intracelular de calcio y la función mitocondrial. Muchas evidencias señalan la articipa-ción del glutamato como excitotoxina en la muerte neuronal hipoglucémica y recientemente; se ha pro-puesto que el estrés oxidativo juega un papel importante en este proceso. En esta revisión analizamos los factores que contribuyen al desarrollo de daño cerebral en hipoglucemia.
REFERENCIAS (EN ESTE ARTÍCULO)
Auer RN, Wieloch T, Olsson Y, Siesjo BK. The distribution of hypoglycemic brain damage. Acta Neuropathol 1984; 64:177-91.
Sommerfield AJ, Deary IJ, Mcaulay V, Frier BM. Moderate hypoglycemia impairs multiple memory functions in healthy adults. Neuropsychol 2003; 17:125-32.
Akyol A, Kiylioglu N, Bolukbasi O, Guney E, Yurekli Y. Repeated hyploglycemia and cognitive decline. A case report. Neuroendocrinol Lett 2003; 24:54-6.
Carrol MF, Burge MR, Schade DS. Severe hypoglycemia in adults. Rev End Metab Dis 2003; 4:149-57.
Auer RN, Olsson Y, Siesjo BK. Hypoglycemic brain injury in the rat. Correlation of density of brain damage with EEG isoelectric time: a quantitative study. Diabetes 1984; 33:1090-8.
Lucas D, Newhouse J. The toxic effect of sodium L-glutamate on the inner layers of the retina. Arch Opthalmol 1957; 58:193-201.
Olney J. Excitatory transmitter neurotoxicity. Neurobiol Aging 1994; 15:259-60.
Choi D. Excitotoxic cell death. J Neurol 1992; 23:1261-76.
Gegelashvili G, Schousboe A. Cellular distribution and kinetic properties of high-affinity glutamate transporters. Brain Res Bull 1998; 45:233-8.
Sandberg M, Nyström B, Hamberger A. Extracellular overflow of neuroactive amino acids during severe insulin-induced hypoglycemia: In vivo dialysis of the rat hippocampus. J Neurochem 1986; 47:178-84.
Engelsen B, Westerberg E, Fonnum F, Wieloch T. Effect of insulin-induced hypoglycemia on the concentrations of glutamate and related amino acids and energy metabolites in the intact and decorticated rat neostriatum. J Neurochem 1986; 47:1634-41.
Gundersen V, Fonnum F, Ottersen OP, Storm-Mathisen J. Redistribution of neuroactive amino acids in hippocampus and striatum during hyplogycemia: a quantitative immunogold study. J Cereb Blood Flow Metab 2001; 21:41-51.
Honegger P, Braissant O, Henry H, Boulat O, Bachmann C, Zurich MG, et al. Alteration of amino acid metabolism in neuronal aggregate cultures exposed to hypoglycemic conditions. J Neurochem 2002; 51:1141-51.
Takata T, Hirai H, Shigemoto T, Okada Y. The release of glutamate and accumulation of intracellular calcium in the guinea pig hippocampal slices during glucose deprivation. Neurosci Lett 1995; 189:21-4.
Massieu L, Morales-Villagrán A, Tapia R. Accumulation of extracellular glutamate by inhibition of its uptake is not sufficient for inducing neuronal damage: an in vivo microdialysis study. J Neurochem 1995; 64:2262-72.
Sánchez-Carbente M, Massieu L. Transient inhibition of glutamate uptake in vivo induces neurodegeneration when energy metabolism is impaired. J Neurochem 1999; 27:129-38.
Massieu L, Gómez-Román N, Montiel T. In vivo potentiation of glutamate-mediated neuronal damage after chronic administration of the glycolysis inhibitor iodoacetate. Exp Neurol 2000; 165:257-67.
Wieloch T, Engelsen B, Westerberg E, Auer R. Lesions of the glutamatergic cortico-striatal projections in the rat ameliorate hypoglycemic brain damage in the striatum. Neurosci Lett 1985; 58:25-30.
Wieloch T. Hypoglycemia-induced neuronal damage prevented by an N-Methyl-D-aspartate antagonist. Science 1985; 230:681-3.
Nellgard B, Wieloch T. Cerebral protection by AMPA- and NMDA-receptor antagonists administered after severe insulin-induced hypoglycemia. Exp Brain Res 1992; 92:259-66.
Papagapiou MP, Auer RN. Regional neuroprotective effects of the NMDA receptor antagonist MK-801 (dizocilpine) in hypoglycemic brain damage. J Cereb Blood Flow Metab 1990; 10:270-6.
Monyer H, Goldberg MP, Choi DW. Glucose deprivation neuronal injury in cortical culture. Brain Res 1989; 483:347-54.
Norberg K, Siesjö BK. Oxidative metabolism of the cerebral cortex of the rat in severe insulin-induced hypoglycaemia. J Neurochem 1976; 26:345-52.
Hollinger BR, Bryan RM. b-receptor-mediated increase in cerebral blood during hypoglycemia. Am J Physiol 1987; 253:949-55.
Dieguéz G, Fernández N, García JL, García-Villalón AL, Monge L, Gómez B. Role of nitric oxide in the effects of hypoglycemia on the cerebral circulation in awake goats. Eur J Pharmacol 1997; 330:185-93.
Horinaka N, Artz N, Jehle J, Takahashi S, Kennedy C, Sokollof L. Examination of potential mechanisms in the enhacement of cerebral blood flow by hypoglycemia and pharmacological doses of deoxyglucose. J Cereb Blood Flow Metab 1997; 17:54-63.
Krolicki L, Leniger-Follert E. Oxygen supply of the brain cortex (rat) during severe hypoglycemia. Pflügers Arch 1980; 387:
Agardh CD, Chapman AG, Nilsson B, Siesjö BK. Endogenous substrates utilized by rat brain in severe insulin-induced hypoglycemia. J Neurochem 1981; 36:490-500.
Choi IY, Seaquist ER, Gruetter R. Effect of hypoglycemia on brain glycogen metabolism in vivo. J Neurosci Res 2003; 72:25-32.
Agardh CD, Folbergrová J, Siesjö BK. Cerebral metabolic changes in profound insulin-induced hypoglycemia, and in the recovery period following glucose administration. J Neurochem 1978; 31:1135-42.
Wieloch T, Harris RJ, Symon L, Siesjö BK. Influence of severe hypoglycemia on brain extracellular calcium and potassium activities, energy and phospholipid metabolism. J Neurochem 1984; 43:160-8.
Lewis LD, Ljunggreb B, Ratcheson RA, Siesjö BK. Cerebral energy state in insulin-induced hypoglycemia related to blood glucose and to EEG. J Neurochem 1974; 21:673-9.
Brooks KJ, Porteous R, Bachelard HS. Effects of hypoglycemia and hypoxia on the intracellular pH of cerebral tissue as measured by 31P nuclear magnetic resonance. J Neurochem 1989; 52:604-10.
Reynold I. Intracellular calcium and magnesium: critical determinants of excitotoxicity? En: Ottersen O, Langmoen L, Gjerstad I, editores. Progress in brain research. Elsevier Science 1998; 116:225-43.
Uematsu D, Greenberg JH, Reivich M, Karp A. Cytosolic free calcium, NAD/NADH redox state and hemodynamic changes in the cat cortex during severe hypoglycemia. J Cereb Blood Flow Metab 1989; 9:149-55.
Cheng B, McMahon DG, Mattson MP. Modulation of calcium current, intracellular calcium levels and cell survival by glucose deprivation and growth factors in hippocampal neurons. Brain Res 1993; 607:275-85.
Friberg H, Wieloch T. Mitochondrial permeability transition in acute neurodegeneration. Biochemie 2002; 84:241-50.
Friberg H, Ferrand-Drake M, Bengtsson F, Halestrap AP, Wieloch T. Cyclosporin A, but not FK 506 protects mitochondria and neurons against hypoglycemic damage and implicates the mitochondrial permeability transition in cell death. J Neurosci 1998; 18:5151-9.
Liu X, Kim CN, Yang J, Jemmerson R, Wang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and citochrome C. Cell 1996; 86:147-57.
Susin SA, Zamzami N, Castedo M, Hirsch T, Marchetti P, Macho A, et al. Bcl-2 inhibits the mitochondrial release of an apoptogenic protease. J Exp Med 1996; 184:1331-3141.
Ferrand-Drake M, Changlian Z, Gunilla G, Hansen AJ, Karlsson J-O, Bahr BA, et al. Cyclosporin A prevents calpain activation despite increased intracellular calcium concentrations, as well as translocation of apoptosis-inducing factor, cytochrome c and caspase-3 activation in neurons exposed to transient hypoglycemia. J Neurochem 2003; 85:31-42.
Bhardwaj SK, Sharma ML, Gulati G, Chhabra A, Kaushik R, Sharma P, et al. Effect of starvation and insulin-induced hypoglycemia on oxidative stress scavenger system and electron transport chain complexes from rat brain, liver, and kidney. Molec Chem Neuropathol 1998; 34:157-68.
Ballesteros JR, Mishra OP, McGowan JE. Alterations in cerebral mitochondria during acute hypoglycemia. Biol Neonate 2003; 84:159-63.
Liu Y, Xiao-Dong S, Liu W, Zhang T-Y, Zuo J. Glucose deprivation induces mitochondrial dysfunction and oxidative stress in PC12 cell line. J Cell Mol Med 2003; 7:49-56.
McConkey D. Biochemical determinants of apoptosis and necrosis. Toxicol Lett 1998; 99:442-9.
Hengartner M. The biochemistry of apoptosis. Nature 2000; 407:770-6.
Patockova J, Mahol P, Tumova E, Krsiak M, Rokyta R, Stipek S, et al. Oxidative stress in the brain tissue of laboratory mice with acute post insulin hypoglycemia. Physiol Res 2003; 52:131-5.
Rego AC, Santos MS, Oliveira CR. Influence of the antioxidants vitamin E and idebenone on retinal cell injury mediated by chemical ischemia, hypoglycemia or oxidative stress. Free Rad Biol Med 1999; 26:1405-7.
Suh SW, Aoyama K, Chen Y, Garnier P, Matsumori Y, Gum E, et al. Hypoglycemic neuronal death and cognitive impairment are prevented by poly(ADP-ribose) polymerase inhibitors administered after hypoglycemia. J Neurosci 2003; 23:10681-90.
Suh SW, Garnier P, Aoyama K, Chen Y, Swanson RA. Zinc release contributes to hypoglycemia-induced neuronal death. Neurobiol Dis 2004; 16:538-45.