2016, Número 2
<< Anterior Siguiente >>
Gac Med Mex 2016; 152 (2)
Genética y genómica en artritis reumatoide (AR): una actualización
Rodríguez-Elías AK, Maldonado-Murillo K, López-Mendoza LF, Ramírez-Bello J
Idioma: Español
Referencias bibliográficas: 105
Paginas: 218-227
Archivo PDF: 205.11 Kb.
RESUMEN
La AR, una enfermedad inflamatoria, crónica y autoinmune, afecta aproximadamente al 1% de la población general. Se
caracteriza por presentar inflamación, dolor, destrucción del cartílago y erosión del hueso. La AR pertenece al grupo de
enfermedades multifactoriales, en cuyo desarrollo influyen diversos factores de riesgo ambientales y genéticos. Los estudios
en familias indican que el desarrollo de la AR está fuertemente influenciado por el componente genético. Actualmente,
conocemos aproximadamente 100 loci asociados no sólo con la susceptibilidad, sino también con la gravedad, la actividad
y la respuesta al tratamiento de la AR; entre ellos se encuentran genes que codifican para el antígeno leucocitario humano
(HLA) de clase II, PTPN22, STAT4, CTLA4, TRAF1, PADI4, FCRL3, TNFIP3, TNF-α y miARN, entre otros. Esta revisión tiene
como objetivo describir el papel de diversos genes involucrados en la regulación del sistema inmunológico innata y
adaptativa que han mostrado asociación con la susceptibilidad a la AR, en diversas poblaciones, incluida la mexicana.
REFERENCIAS (EN ESTE ARTÍCULO)
Holmdahl R, Malmström V, Burkhardt H. Autoimmune priming, tissue attack and chronic inflammation – the three stages of rheumatoid arthritis. Eur J Immunol. 2014;44(6):1593-9.
De Hair MJ, Landewé RB, van de Sande MG, et al. Smoking and overweight determine the likehood of developing rheumatoi arthritis. Ann Rheum Dis. 2013;72(10):1654-8.
Bisoendial RJ, Stroes ES, Tak PP. Critical determinants of cardiovascular risk in rheumatoid arthritis. Curr Pharm Des. 2011;17(1):21-6.
Gorman CL, Cope AP. Immune-mediated pathways in chronic inflammatory arthritis. Best Pract Res Clin Rheumatol. 2008;22(2):221-38.
Ceribelli A, Nahid MA, Satoh M, Chan EK. MicroRNAs in rheumatoid arthritis. FEBS Lett. 2011;585(23):3667-74.
Cope A. Rheumatoid arthritis. En: Rich R, et al., eds. Clinical Immunology. Nueva York: Elsevier; 2007. p. 52.1-52.21.
Barton A, Worthington J. Genetic susceptibility to rheumatoid arthritis: an emerging picture. Arthritis Rheum. 2009;61(10):1441-6.
Gregersen PK. Susceptibility genes for rheumatoid arthritis-a rapid expanding harvest. Bull NYU Hosp Jt Dis. 2010;68(3):179-82.
Okada Y, Wu D, Trynka G, et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature. 2014;506(7488):376-81.
Hashemi M, Eskandari-Nasab E, Zakeri Z, et al. Association of pr-miRNA- 146a rs2910164 and pre-miRNA-499 rs3746444 polymorphisms and susceptibility to rheumatoid arthritis. Mol Med Rep. 2013;7(1):287-91.
Gabriel SE. The epidemiology of rheumatoid arthritis. Rheum Dis Clin North Am. 2001;27(2):269-81.
Peláez-Ballestas I, Sanin LH, Moreno-Montoya J, et al. Epidemiology of the rheumatic diseases in Mexico. A study of 5 regions based on the COPCORD methodology. J Rheumatol Suppl. 2011;86:3-8.
Karlson EW, Deane K. Environmental and gene-environment interactions and risk of rheumatoid arthritis. Rheum Dis Clin North Am. 2012;38(2):405-26.
Colebatch AN, Edwards CJ. The influence of early life factors on the risk of developing rheumatoid arthritis. Clin Exp Immunol. 2011;163(1):11-6.
Scott DL, Wofe F, Huizinga TW. Rheumatoid arthritis. Lancet. 2010;376(0746):1094-108.
Marston B, Palanichamy A, Anolik JH. B cells in the pathogenesis and treatment of rheumatoid arthritis. Curr Opin Rheumatol. 2010; 22(3):307-15.
Wang Q, Ma Y, Liu D, Zhang L, Wei W. The roles of B cells and their interactions with fibroblast-like synoviocytes in the pathogenesis of rheumatoid arthritis. Int Arch Allergy Immunol. 2011;155(3):205-11.
Lowin T, Straub RH. Integrins and their ligands in rheumatoid arthritis. Arthritis Res Ther. 2011;13(5):244.
Choy E. Understanding the dynamics: pathways involved in the pathogenesis of rheumatoid arthritis. Rheumatology (Oxford). 2012;51 Suppl 5:v3-11.
Iwamoto T, Okamoto H, Toyama Y, Momohara S. Molecular aspects of rheumatoid arthritis: chemokines in the joints of patients. FEBS J. 2008;275(18):4448-55.
Fragoso JM, Vargas Alarcón G, Jiménez Morales S, Reyes Hernández OD, Ramírez Bello J. [Tumor necrosis factor alpha (TNF-α) in autoimmune diseases (AIDs): molecular biology and genetics]. Gac Med Mex. 2014;150(4):334-44.
Keffer J, Probert L, Cazlaris H, et al. Transgenic mice expressing human tumour necrosis factor: a predictive genetic model of arthritis. EMBO J. 1991;10(13):4025-31.
Brennan FM, Chantry D, Jackson A, Maini R, Feldmann M. Inhibitory effect of TNF alpha antibodies on synovial cell interleukin-1 production in rheumatoid arthritis. Lancet. 1989;2(8567):244-7.
Ferraccioli G, Bracci-Laudiero L, Alivernini S, Gremese E, Tolusso B, De Benedetti F. Interleukin-1β and interleukin-6 in arthritis animal models: role in the early phase of transition from acute to chronic inflammation and relevance for human rheumatoid arthritis. Mol Med. 2010;16(11- 12):552-7.
Müller-Ladner U, Pap T, Gay RE, Neidhart M, Gay S. Mechanisms of disease: the molecular and celular basis of joint destruction in rheumatoid arthritis. Nat Clin Pract Rheumatol. 2005;1(2):102-10.
Benedetti G, Miossec P. Interleukin 17 contributes to the chronicity of inflammatory diseases such as rheumatoid arthritis. Eur J Immunol. 2014;44(2):339-47.
Jarvinen P, Aho K. Twin studies in rheumatic diseases. Semin Arthritis Rheum. 1994;24(1):19-28.
Kurkó J, Besenyei T, Laki J, Glant TT, Mikecz K, Szekanecz Z. Genetics of rheumatoid arthritis – a comprehensive review. Clin Rev Allergy Immunol. 2013;45(2):170-9.
Balsa A, Cabezón A, Orozco G, et al. Influence of HLA DRB1 alleles in the susceptibility of rheumatoid arthritis and the regulation of antibodies against citrullinated proteins and rheumatoid factor. Arthritis Res Ther. 2010;12(2):R62.
Bowes J, Barton A. Recent advances in the genetics of RA susceptibility. Rheumatology (Oxford). 2008;47(4):399-402.
Taylor M, Hussain A, Urayama K, et al. The human major histocompatibility complex and childhood leukemia: an etiological hypothesis based on molecular mimicry. Blood Cells Mol Dis. 2009;42(2):129-35.
Bax M, van Heemst J, Huizinga TW, Toes RE. Genetics of rheumatoid arthritis: whats have we learned? Immunogenetics. 2011;63(8):459-66.
Eyre S, Bowes J, Diogo D, et al. High-density genetic mapping identifies new susceptibility loci for rheumatoid arthritis. Nat Genet. 2012;44(12):1336-40.
Stahl EA, Raychaudhuri S, Remmers EF, et al. Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci. Nat Genet. 2010;42(6):508-14.
Fousteri G, Liossis SN, Battaglia M. Roles of the protein tyrosine phosphatase PTPN22 in immunity and autoimmunity. Clin Immunol. 2013; 149(3):556-65.
Alonso A, Sasin J, Bottini N, et al. Protein tyrosine phosphatases in the human genome. Cell. 2004;117(6):699-711.
Burn GL, Svensson L, Sánchez-Blanco C, Saini M, Cope AP. Why is PTPN22 a good candidate susceptibility gene for autoinmune disease? FEBS Lett. 2011;585(23):3689-98.
Stanford SM, Mustelin TM, Bottini N. Lymphoid tyrosine phosphatase and autoimmunity: human genetics rediscovers tyrosine phosphatases. Semin Immunopathol. 2010;32(2):127-36.
Salmond RJ, Brownlie RJ, Morrison VL, Zamovska R. The tyrosine phosphatase PTPN22 discriminates weak self peptides from strong agonist TCR signals. Nat Immunol. 2014;15(9):875-83.
Song GG, Bae SC, Kim JH, Lee YH. The PTPN22 C1858T polymorphism and rheumatoid arthritis: a meta-analysis. Rheumatol Int. 2013;33(8): 1991-9.
Lee YH, Bae SC, Choi SJ, Ji JD, Song GG. The association between the PTPN22 C1858T polymorphism and rheumatoid arthritis: a meta-analysis update. Mol Biol Rep. 2012;39(4):3453-60.
Torres-Carrillo NM, Ruiz-Noa Y, Martínez-Bonilla GE, et al. The +1858C/T PTPN22 gene polymorphism confers genetic susceptibility to rheumatoi arthritis in Mexican population from the Western Mexico. Immuno Lett. 2012;147(1-2):41-6.
Vossenaar ER, Zendman AJ, van Venrooij, Pruijn GJ. PAD, a growing family of citrullinating enzymes: genes, features and involvement in disease. Bioessays. 2003;25(11):1106-18.
Quirke AM, Fisher BA, Kinloch AJ, Venables PJ. Citrullination of autoantigens: upstream of TNFα in the pathogenesis of rheumatoid arthritis. FEBS Lett. 2011;585(23):3681-8.
Harney SM, Meisel C, Sims AM, Woon PY, Wordsworth BP, Brown Ma. Genetic and genomic studies of PADI4 in rheumatoid arthritis. Rheumatology (Oxford). 2005;44(7):869-72.
Suzuki A, Yamada R, Chang X, et al. Functional haplotypes of PADI4, encoding citrullinating enzyme peptidylarginine deiminase 4, are associated with rheumatoid arthritis. Nat Genet. 2003;34(4):395-402.
Hou S, Gao GP, Zhang XJ, et al. PADI4 polymorphisms and susceptibility to rheumatoid arthritis: a meta-analysis. Mod Rheumatol. 2013;23(1):50-60.
Too CL, Murad S, Dhaliwal JS, et al. Polymorphisms in peptidylarginine deiminase associate with rheumatoid arthritis in diverse Asian populations: evidence from MyEIRA study and meta-analysis. Arthritis Res Ther. 2012;14(6):R250.
Iwamoto T, Ikari K, Nakamura M, et al. Association between PADI4 and rheumatoid arthritis: a meta-analysis. Rheumatology (Oxford). 2006;45(7): 804-7.
Zavala-Cerna MG, Gonzalez-Montoya NG, Nava A, et al. PADI4 haplotypes in association with RA Mexican patients, a new prospect for antigen modulation. Clin Dev Immunol. 2013;2013:383681.
Kurreeman FA, Padyukov L, Marques RB, et al. A candidate gene approach identifies the TRAF1/C5 region as a risk factor for rheumatoid arthritis. PLoS Med. 2007;4(9):e278.
Plenge RM, Seielstad M, Padyukov L, et al. TRAF1-C5 as a risk locus for rheumatoid arthritis—a genome wide study. N Engl J Med. 2007;357(12):1199-209.
Arron JR, Pewzner Jung Y, Walsh MC, Kobayashi T, Choi Y. Regulation of the subcellular localization of tumor necrosis factor receptor-associated factor (TRAF)2 by TRAF1 reveals mechanisms of TRAF2 signaling. J Exp Med. 2002;196(7):923-34.
Zhang X, Li W, Zhang X, et al. Association between polymorphism in TRAF1/C5 gene and risk of rheumatoid arthritis: a meta-analysis. Mol Biol Rep. 2014;41(1):317-24.
Watanabe N, Nakajima H. Coinhibitory molecules in autoimmune diseases. Clin Dev Immunol. 2012;2012:269756.
Viatte S, Plant D, Raychaudhuri S. Genetics and epigenetics of rheumatoid arthritis. Nat Rev Rheumatol. 2013;9(3):141-53.
Li X, Zhang C, Zhang J, et al. Polymorphisms in the CTLA-4 gene and rheumatoid arthritis susceptibility: a meta-analysis. J Clin Immunol. 2012;32(3):530-9.
Lee YH, Bae SC, Choi SJ, Ji JD, Song GG. Association between the CTLA-4 +49A/G polymorphism and susceptibility to rheumatoid arthritis: a meta-analysis. Mol Biol Rep. 2012;39(5):5599-605.
Muñoz-Valle JF, Valle Y, Padilla-Gutiérrez JR, et al. The +49A>G CTLA- 4 polymorphism is associated with rheumatoid arthritis in Mexican population. Clin Chim Acta. 2010;411(9-10):725-8.
Torres-Carrillo N, Ontiveros-Mercado H, Torres-Carrillo NM, et al. The -319C/+49G/CT60G haplotype of CTLA-4 gene confers susceptibility to rheumatoid arthritis in Mexican population. Cell Biochem Biophys. 2013;67(3):1217-28.
Remmers EF, Plenge RM, Lee AT, et al. STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. N Engl J Med. 2007;357(10):977-86.
Eyre S, Bowes J, Diogo D, et al. High-density genetic mapping identifies new susceptibility loci for rheumatoid arthritis. Nat Genet. 2012;44(12):1336-40.
Gu E, Lu J, Xing D, et al. Rs7574865 polymorphism in signal transducers and activators of transcription 4 gene and rheumatoid arthritis: an update meta-analysis of 28 case-control comparisons. Int J Rheum Dis. 2015;18(1):3-16.
Zheng J, Yin J, Huang R, Petersen F, Yu X. Meta-analysis reveals an association of STAT4 polymorphisms with systemic autoimmune disorders and anti-dsDNA antibody. Hum Immunol. 2013;74(8):986-92.
Liang YL, Wu H, Shen X, et al. Association of STAT4 re7574865 polymorphism with autoimmune diseases: a meta-analysis. Mol Biol Rep. 2012;39(9):8873-82.
Lien C, Fang CM, Huso D, Livak F, Lu R, Pitha PM. Critical role of IRF5 in regulation of B-cell diferentiation. Proc Natl Acad Sci USA. 2010; 107(10):4664-8.
Krausgruber T, Blazek K, Smallie T, et al. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nat Immunol. 2011;12(3):231-8.
Barnes BJ, Kellum MJ, Pinder KE, Frisancho JA, Pitha PM. Interferon regulatory factor 5, a novel mediator of cell cycle arrest and cell death. Cancer Res. 2003;63(19):6424-31.
Lee YH, Bae SC, Choi SJ, Ji JD, Song GG. Association between interferon regulatory factor 5 polymorphisms and rheumatoid arthritis: a meta- analysis. Mol Biol Rep. 2013;40(2):1791-9.
Jia X, Hu M, Lin Q, Ren H. Association of the IRF5 rs2004640 polymorphism with rheumatoid arthritis: a meta-analysis. Rheumatol Int. 2013;33(11):2757-61.
Carmona FD, Martín JE, Beretta L, et al. The systemic lupus erythematosus IRF5 risk haplotype is associated with systemic sclerosis. PLoS One. 2013;8(1):e54419.
Chistiakov DA, Christiakov AP. Is FCRL3 a new general autoimmunity gene? Hum Immunol. 2007;68(5):375-83.
Kochi Y, Yamada R, Suzuki A, et al. A functional variant in FCRL3, encoding Fc receptor-like 3, is associated with rheumatoid arthritis and several autoimmunities. Nat Genet. 2005;37(5):478-85.
Lee YH, Woo JH, Choi SJ, Ji JD, Song GG. Fc receptor-like 3-169C/T polymorphism and RA susceptibility: a meta-analysis. Rheumatol Int. 2010;30(7):947-53.
Song GG, Bae SC, Kim JH, et al. Association between functional Fc receptor-like 3 (FCRL3) -169C/T polymorphism and susceptibility to seropositive rheumatoid arthritis in Asian: a meta-analysis. Humn Immunol. 2013;74(9):1206-13.
Ramírez Bello J, Jiménez Moráles S, Espinosa Rosales F, et al. Juvenile rheumatoid arthritis and asthma, but not childhood-onset systemic lupus erythematosus are associated with FCRL3 polymorphisms in Mexicans. Mol Immunol. 2013;53(4):374-8.
Vereecke L, Beyaert R, van Loo G. The ubiquitin-editing enzyme A20 (TNFAIP3) is a central regulator of immunopathology. Trends Immunol. 2009;30(8):383-91.
Elsby LM, Orozco G, Denton J, Worthington J, Ray DW, Donn RP. Functional evaluation of TNFAIP3 (A20) in rheumatoid arthritis. Clin Exp Rheumatol. 2010;28(5):708-14.
Zhang X, Li W, Zhang X, et al. Single nucleotide polymorphisms in TNFAIP3 were associated with the risks of rheumatoid arthritis in northern Chinese Han population. BMC Med Genet. 2014;15:56.
Lee YH, Bae SC, Choi SJ, Ji JD, Song GG. Associations between TNFAIP3 gene polymorphisms and rheumatoid arthritis: a meta-analysis. Inflamm Res. 2012;61(6):635-41.
Lee YH, Song GG. Associations between TNFAIP3 gene polymorphisms and systemic lupus erythematosus: a meta-analysis. Genet Test Mol Biomarkers. 2012;16(9):1105-10.
Musone SL, Taylor KE, Nititham J, et al. Sequencing of TNFAIP3 and association of variants with multiple autoimmune diseases. Genes Immun. 2011;12(3):176-82.
Ramírez Bello J, Vargas Alarcón G, Tovilla Zárate C, Fragoso JM. [Single nucleotide polymorphisms (SNPs): functional implications of regulatory- SNP (rSNP) and structural RNA (srSNPs) in complex diseases]. Gac Med Mex. 2013;149(2):220-8.
Rodríguez Carreón AA, Zúñiga J, Hernández Pacheco G, et al. Tumor necrosis factor-alpha -308 promoter polymorphism contributes independently to HLA alleles in the severity of rheumatoid arthritis in Mexicans. J Autoimmun. 2005;24(1):63-8.
Jiménez Morales S, Velázquez Cruz R, Ramírez Bello J, et al. Tumor necrosis factor-alpha is a common genetic risk factor for asthma, juvenile rheumatoid arthritis, and systemic lupus erythematosus in a Mexican pediatric population. Hum Immunol. 2009;70(4):251-6.
Song GG, Bae SC, Kim JH, Lee YH. Association between TNF-α promoter -308A/G polymorphism and rheumatoid arthritis: a meta-analysis. Rheumatol Int. 2014;34(4):465-71.
Velu VK, Ramesh R, Srinivasan AR. Circulating microRNAs as biomarkers in health and disease. J Clin Diagn Res. 2012;6(10):1791-5.
Chen LJ, Lim SH, Yeh YT, Lien SC, Chiu JJ. Roles of microRNAs in atherosclerosis and restenosis. J Biomed Sci. 2012;19(1):79.
Zare-Shahabadi A, Renaudineau Y, Rezaei N. MicroRNAs and multiple sclerosis: from physiopathology toward therapy. Expert Opin Ther Targets. 2013;17(12):1497-507.
Igaz I, Szönyi M, Varga P, Topa L. [Potential relevance of microRNAs in the diagnostics of inflammatory bowel diseases]. Orv Hetil. 2014;155(13): 487-91.
Yan S, Yim LY, Lu L, Lau CS, Chan VS. MicroRNA regulation in systemic lupus erythematosus pathogenesis. Immune Netw. 2014;14(3):138-48.
Filková M, Jüngel A, Gay RE, Gay S. MicroRNAs in rheumatoid arthritis: potential role in diagnosis and therapy. Bio Drugs. 2012;26(3):131-41.
UI Hussain M. Micro-RNAs (miRNAs): genomic organization, biogenesis and mode of action. Cell Tissue Res. 2012;349(2):405-13.
Slaby O, Bienertova-Vascu J, Svoboda M, Vyzula R. Genetic polymorphisms and microRNAs: new direction in molecular epidemiology of solid cancer. J Cell Mol Med. 2012;16(1):8-21.
Song FJ, Chen KX. Single-nucleotide polymorphisms among microRNA: big effects on cancer. Chin J Cancer. 2011;30(6):381-91.
Georges M, Coppieters W, Charlier C. Polymorphic miRNA-mediates gene regulation: contribution to phenotypic variation and disease. Curr Opin Genet Dev. 2007;17(3):166-76.
El-Shal AS, Aly NM, Galil SM, Moustafa MA, Kandel WA. Association of microRNAs genes polymorphisms with rheumatoid arthritis in Egyptian female patients. Joint Bone Spine. 2013;80(6):626-31.
Hashemi M, Eskandari-Nasab E, Zakeri Z, et al. Association of pre-miRNA- 146a rs2910164 and pre-miRNA-499 rs376444 polymorphisms and susceptibility to rheumatoid arthritis. Mol Med Rep. 2013;7(1):287-91.
Chatzikyriakidou A, Voulgari PV, Georgiou I, Drosos AA. miRNAs and related polymorphisms in rheumatoid arthritis susceptibility. Autoimmun Rev. 2012;11(9):636-41.
Li K, Tie H, Hu N, et al. Association of two polymorphisms rs2910164 in miRNA-146a and rs3746444 in miRNA-499 with rheumatoid arthritis: a meta-analysis. Hum Immunol. 2014;75(7):602-8.
Fu L, Jin L, Yan L, et al. Comprehensive review of genetic association studies and meta-analysis on miRNA polymorphisms and rheumatoid arthritis and systemic lpus erythematosus susceptibility. Hum Immunol. 2016;77(1):1-6.
Jiménez-Morales S, Gamboa-Becerra R, Baca V, et al. MiR-146a polymorphism is associated with asthma but not with systemic lupus erythematosus and juvenile rheumatoid arthritis in Mexican patients. Tissue Antigens. 2012;80(4):317-21.
Raychaudhuri S, Thompson BP, Remmers EF, et al. Genetic variants at CD28, PRDM1 and CD2/CD58 are associated with rheumatoid arthritis risk. Nat Genet. 2009;41(12):1313-8.
Raychaudhuri S, Remmers EF, Lee AT, et al. Common variants at CD40 and other loci confer risk of rheumatoid arthritis. Nat Genet. 2008;40(10):1216-23.
Lee YH, Ji JD, Song GG. Associations between FCGR3A polymorphisms and susceptibility to rheumatoid arthritis: a meta-analysis. J Rheumatol. 2008;35(11):2129-35.