2015, Número 2
<< Anterior Siguiente >>
Cir Plast 2015; 25 (2)
Experiencia a largo plazo con el uso de implantes absorbibles preformados para el tratamiento de fracturas orbitarias
Malagón-Hidalgo HO, González-Magaña F, Ayala-Ugalde F, García-Cano E, Vilchis-López R
Idioma: Español
Referencias bibliográficas: 35
Paginas: 97-105
Archivo PDF: 411.26 Kb.
RESUMEN
Los objetivos del tratamiento de las fracturas orbitarias son reducción del tejido orbitario, reparación del defecto y restitución del volumen. Se han descrito muchos materiales para cumplir estas metas sin que haya reporte de series con el uso de materiales absorbibles en México. Se realizó un estudio en el Centro Médico ISSEMyM, en el Estado de México que incluyó a todos los pacientes con diagnóstico de fractura orbitaria reconstruida con implante absorbible de ácido l-poliláctico y poliglicólico. Se reportan 83 fracturas presentes en 57 pacientes. Las complicaciones presentadas fueron enoftalmos en 5 (8.7%) y atrapamiento muscular en uno (1.8%). Sólo dos pacientes se reoperaron. El material absorbible presenta ventajas al restaurar la continuidad del piso orbitario, disponibilidad ilimitada, disminución del tiempo quirúrgico, evitar la morbilidad del sitio donador y complicaciones tardías. En nuestro estudio no se presentaron casos de diplopía a diferencia de los estudios con uso de cartílago septal, PDS, malla de titanio, polietileno e injerto osteocondral, se reporta en rango de 2 a 50%. El uso de implante absorbible en fracturas de piso de órbita menores de 2 cm
2 es factible y exitoso, con un riesgo mínimo de enoftalmos, diplopía y complicaciones
REFERENCIAS (EN ESTE ARTÍCULO)
Erdmann D, Follmar KE, Debrujin M, Bruno AD, Jung SH, Edelman D et al. A retrospective analysis of facial fracture etiologies. Ann Plast Surg 2008; 60(4): 398-403.
Hammer B. Orbital fractures. Diagnosis, operative treatment, secondary corrections. Bern: Hogrefe & Huber Publishers; 1995.
Yano H, Nakano M, Anraku K, Suzuki Y, Ishida H, Murakami R et al. A consecutive case review of orbital blowout fractures and recommendations for comprehensive management. Plast Reconstr Surg 2009; 124: 602-611.
Hollier L, Thornton J. Facial fractures I: upper two thirds. Selected Readings in Plastic Surgery 2002; 9(26).
Mathes SJ. Plastic surgery. Vol. III: The head and neck. Part 2. London, United Kingdom: Saunders Elsevier; 2006.
Bogusiak K, Arkuszewski P. Characteristics and epidemiology of zygomaticomaxillary complex fractures. J Craniofac Surg 2010; 21(4): 1018-1023.
Kontio R, Lindqvist C. Management of orbital fractures. Oral Maxillofac Surg Clin North Am 2009; 21(2): 209-220.
Sharabi SE, Koshy JC, Thornton JF, Hollier LH. Facial fractures. Plast Reconstr Surg 2011; 127(2): 8-19.
Manchio JV. Role of sagittal reformatted computed tomographic images in the evaluation of orbital floor fractures. J Craniofac Surg 2010; 21(4): 1153-1157.
Castellani A, Negrini S, Zanetti U. Treatment of orbital floor blowout fractures with conchal auricular cartilage graft: a report on 14 cases. J Oral Maxillofac Surg 2002; 60: 1413-1417. Available in: http://www.ncbi.nlm.nih.gov/pubmed/12465002
Biomet Microfixation. 1520 Tradeport Drive. Jacksonville, Fl 32218-2480. www.biometmicrofixation.com. 2010. Form No. BMF00-2000. Rev 75k1102
Baino F. Biomaterials and implants for orbital floor repair. Acta Biomater 2011; 7: 3248-3266.
Park HS, Kim YK, Yoon CH. Various applications of titanium mesh screen implant to orbital wall fractures. J Craniofac Surg 2001; 12(6): 555-560.
Lee HB, Nunery WR. Orbital adherence syndrome secondary to titanium implant material. Ophthal Plast Reconstr Surg 2009; 25(1): 33-36.
Custer PL, Lind A, Trinkaus KM. Complications of supramid orbital implants. Ophthal Plast Reconstr Surg 2003; 19(1): 62-67.
Taban M, Nakra T, Mancini R, Douglas RS, Goldberg RA. Orbital wall fracture repair using seprafilm. Ophthal Plast Reconstr Surg 2009; 25(3): 211-214.
Mauriello JA Jr, Wasserman B, Kraut R. Use of vicryl (poliglactin-910) mesh implant for repair of orbital floor fracture causein diplopia: a study of 28 patients over 5 years. Ophtal Plast Reconstr Surg 1993; 9(3): 191-185.
Pietrzak WS. Degradation of LactoSorb fixation devices in the craniofacial skeleton. J Craniofac Surg 2012; 23: 578-581.
Pietrzak WS, Kumar M. An enhanced strength retention poly (glycolic acid)-poly (L-lactic acid) copolymer for internal fixation: in vitro characterization of hydrolysis. J Craniofac Surg 2009; 20: 1533-1537. Available in: http://www.ncbi.nlm.nih.gov/PubMed/19816292
Ewers R, Gutta R. S421: management of craniomaxillofacial trauma with bioresorbable fixation systems. J Oral Maxillofac Surg 2009; 67: 134-135. Available in: http://linkinghub.elsevier.com/retrieve/ pii/S0278239109009239
Degala S, Shetty SK, Biddappa L. Reconstruction of post-traumatic Internal Orbital Wall Defects with Titanium Mesh. J Maxillofac Oral Surg 2013; 12(4): 418-423.
Fialkov JA, Holy C, Forrest CR, Philips JH, Antonyshyn OM. Postoperative infections in craniofacial reconstructive procedures. J Craniofac Surg 2001; 12: 362-368.
Wiltfang J, Merten HA, Schultze-Mosgau S, Schrell U, Wénzel D, Kessler P. Biodegradable miniplates (LactoSorb): long-term results in infant minipigs and clinical results. J Craniofac Surg 2000; 11(3): 239-243.
Dubois SA. Controversies in orbital reconstruction. Defect-driven orbital reconstruction: a systematic review. Int J Oral Maxillofac Surg 2015; 44: 308-315.
Kruschewsky L de S, Novais T, Daltro C, Castelo-Branco B, Lessa M, Kruschewsky MB et al. Fractured orbital wall reconstruction with an auricular cartilage graft or absorbable polyacid copolymer. J Craniofac Surg 2011; 22: 1256-1259.
Bayat M, Momen-Heravi F, Khalilzadeh O, Mirhosseni Z, Sadeghi-Tari A. Comparison of conchal cartilage graft with nasal septal cartilage graft for reconstruction of orbital floor blowout fractures. Br J Oral Maxillofac Surg 2010; 48: 617-620.
Dietz A, Ziegler CM, Dacho A, Althof F, Conradt C, Kolling G et al. Effectiveness of a new perforated 0.15 mm poly-p-dioxanonfoil versus titanium-dynamic mesh in reconstruction of the orbital floor. J Maxillofac Surg 2001; 29: 82-88.
Al-Sukhun J, Lindqvist C. A comparative study of 2 implants used to repair inferior orbital wall bony defects: autogenous bone graft versus bioresorbable poly-L/DL-lactide [P (L/DL) LA 70/30] plate. J Oral Maxillofac Surg 2006; 64: 1038-1048.
Lieger O, Schaller B, Zix J, Kellner F, Iizuka T. Repair of orbital floor fractures using bioresorbable poly-L/DL-lactide plates. Arch Facial Plast Surg 2010; 12: 399-404.
Wajih WA, Shaharuddin B, Razak NH. Hospital Universiti Sains Malaysia experience in orbital floor reconstruction: autogenous graft versus Medpor. J Oral Maxillofac Surg 2011; 69: 1740-1744.
Cai EZ, Koh YP, Hing EC, Low JR, Shen JY, Wong HC et al. Computer-assisted navigational surgery improves outcomes in orbital reconstructive surgery. J Craniofac Surg 2012; 23: 1567-1573.
Fernandes R, Fattahi T, Steinberg B, Schare H. Endoscopic repair of isolated orbital floor fracture with implant placement. J Oral Maxillofac Surg 2007; 65: 1449-1553.
Scolozzi P, Momjian A, Heuberger J, Andersen E, Broome M, Terzic A et al. Accuracy and predictability in use of AO three-dimensionally preformed titanium mesh plates for posttraumatic orbital reconstruction: a pilot study. J Craniofac Surg 2009; 20: 1108-1113.
Piombino P, Iaconetta G, Ciccarelli R, Romeo A, Spinzia A, Califano L. Repair of orbital floor fractures: our experience and new technical findings. Craniomaxillofac Trauma Reconstr 2010; 3: 217-222.
Sakamoto Y. Combined use of resorbable poly-L-lactic-acid-polyglycolic acid implant and bone cement for treating large orbital floor fractures. J Plast Reconstr Aesth Surg 2013; 67: e88-e90.