2005, Número 6
<< Anterior Siguiente >>
Rev Invest Clin 2005; 57 (6)
El kininógeno de alto peso molecular: su participación en la respuesta inflamatoria y en la angiogénesis. Propiedades y posible aplicación terapéutica
Isordia-Salas I, Sainz IM, Pixley RA, Martínez-Murillo C, Colman RW
Idioma: Español
Referencias bibliográficas: 88
Paginas: 802-813
Archivo PDF: 206.93 Kb.
RESUMEN
Se ha demostrado la participación del sistema plasmático de kalikreína-kininas (KKS) en el proceso inflamatorio, el cual incluye reacciones de daño celular, coagulación y fibrinólisis, formación de kininas, activación del complemento, secreción de citoquinas y liberación de proteasas. El KKS se encuentra activado en el síndrome de respuesta inflamatoria sistémica con una disminución en la concentración plasmática de las proteínas que lo constituyen. También se ha demostrado una activación similar en la diabetes, choque séptico, vasculitis en infantes, enfermedad injerto-huésped, coagulación intravascular diseminada, pacientes con abortos de repetición, angioedema hereditario, el síndrome de estrés respiratorio del adulto y enfermedad coronaria arterial. Mediante el uso de modelos animales experimentales, nuestro laboratorio ha demostrado una participación directa del KKS en la patogénesis de la artritis experimental aguda y la enterocolitis aguda y crónica. Se ha demostrado que en la rata tipo Lewis, cuando es deficiente de kininógeno de alto peso molecular (HK), la enfermedad inflamatoria intestinal es menos severa comparada con la presentada en ratas con niveles normales de HK como la Buffalo. Nosotros mostramos una diferencia entre el gene que codifica la molécula del kininógeno de la rata tipo Buffalo (resistentes) y Lewis (susceptibles), que resulta en un incremento de la actividad proteolítica de kalikreína sobre su substrato HK, lo cual predispone a las ratas Lewis al desarrollo de la enfermedad inflamatoria crónica. Se ha demostrado una disminución en las manifestaciones inflamatorias sistémicas de la enterocolitis y artritis experimental mediante el uso de un inhibidor específico de la kalikreína (P8720). Además, el antagonista del receptor 2 de la bradikinina (BR2) atenuó los cambios inflamatorios en el mismo modelo animal. Asimismo, se ha demostrado que las ratas Lewis deficientes de kininógeno desarrollaron inflamación intestinal sistémica menos severa. Mediante el uso del anticuerpo monoclonal C11C1 contra HK se logró una disminución de la angiogénesis y, consecuentemente, el crecimiento tumoral. En conclusión, los resultados demuestran que el sistema plasmático de KKS desempeña un papel preponderante en la patogénesis de la artritis reumatoide, la enfermedad intestinal crónica y en el proceso angiogénico.
REFERENCIAS (EN ESTE ARTÍCULO)
Colman RW, Schmaier AH. Contact system: a vascular biology, modulator with anticoagulant, profibrinolytic, antiadhesive, and proinflammatory attributes. Blood 1997; 90: 3819-43.
Chavakis T, Pixley RA, Isordia-Salas I, Colman RW, Preissner KT. A novel antithrombotic role for high molecular weight kininogen as inhibitor of plasminogen activator inhibitor-1 function. J Biol Chem 2002; 277: 32677-82.
Chavakis T, Preissner KT. Potential pharmacological applications of the antithrombotic molecule high molecular weight kininogen. Current Vasc Pharmacol 2003; 1: 59-64.
Colman RW, White JV, Scovell S, Stadnicki A, Sartor RB. Kininogen are antithrombotic proteins in vivo. Arterioscler Thromb Vasc Biol 1999; 19: 2245-50.
Campbell DJ. The kallikrein-kinin system in humans. Clin Exp Pharmacol Physiol 2001; 28: 1060-5.
Kaplan AP, Joseph K, Silverberg M. Pathways for bradykinin formation and inflammatory disease. J Allergy Clin Immunol 2002; 109: 195-209.
Shariat-Madar Z, Mahdi F, Schmaier AH. Assembly and activation of the plasma kallikrein-kinin system: a new interpretation. Int Immunopharmacology 2002; 2: 1841-19.
Kitamura N, Kitagawa H, Fukushima D, Takagaki Y, Miyata T, Nakanishi S. Structural organization of the human kininogen gene and a model for its evolution. J Biol Chem 1985; 260: 8610-7.
Barros NM, Tersariol IL, Oliva ML, Araujo MS, Sampaio CA, Juliano L, da Motta G. High molecular weight kininogen as substrate for cathepsin G. Biol Chem 2004; 385: 515-5.
Kozik A, Moore RB, Potempa J, Imamura T, Rapala-Kozik M, Travis J. A novel mechanism for bradykinin production at inflammatory sites. Diverse effects of a mixture of neutrophil elastase and mast cell tryptase versus tissue and plasma kallikrein on native and oxidized kininogen. J Biol Chem 1998; 273: 33224-9.
Colman RW, Pixley RA, Najamunnisa S, Yan W, Wang J, Mazar A, McCrae KR. Binding of high molecular weight kininogen to human endothelial cells is mediated via a site within domains 2 and 3 of the urokinase receptor. J Clin Invest 1997; 100: 1481-7.
Mahdi F, Shariat-Madar Z, Tood RF 3rd, Figueroa CD, Schmaier AH. Expression and colocalization of cytokeratin 1 and urokinase plasminogen activator receptor on endothelial cell. Blood 2001; 97: 2342-50.
Herwald H, Dedio J, Kellner R, Loos M, Muller-Esterl W. Isolation and characterization of the kininogen-binding protein p33 from endothelial cells. Identity with the gC1q receptor. J Biol Chem 1996; 271: 13040-7.
Joseph K, Ghebrehiwet B, Peerschke EI, Reid KB, Kaplan AP. Identification of the zinc-dependant endothelial cell binding protein for high molecular weight kininogen and factor XII: identity with the receptor that binds to the globular “heads” of C1q (gC1q-R). Proc Natl Acad USA 1996; 93: 8552-7.
Bradford HN, Pixley RA, Colman RW. Human factor XII binding to the glycoprotein Ib-IX-V complex inhibits thrombin-induced platelet aggregation. J Biol Chem 2000; 275: 22756-63.
DeLa Cadena RA, Kunapuli SP, Walz DA, Colman RW. Expression of the thrombospondin 1 on the surface of activated platelets mediates their interaction with the heavy chains of human kininogens through Lys 244-Pro254. Thromb Haemost 1998; 79: 186-94.
Chavakis T, Kanse SM, Pixley RA, May AE, Isordia-Salas I, Colman RW, Preissner KT. Regulation of leukocyte recruitment by polypeptides derived from high molecular weight kininogen. FASEB J 2001; 15: 2365-76.
Higashiyama S, Ohkubo I, Ishiguro H, Sasaki M, Matsuda T, Nakamura R. Heavy chain of human high molecular weight and low molecular weight kininogens binds calcium ion. Biochemistry 1987; 26: 7450-8.
Bradford HN, DeLa Cadena RA, Kunapuli SP, Dong JF, Lopez JA, Colman RW. Human kininogens regulate thrombin binding to platelets through the glycoprotein Ib IX-V-complex. Blood 1997; 90: 1508-15.
Joseph K, Kaplan AP. Formation of bradykinin: a major contributor to the innate inflammatory response. Adv Immunol 2005; 86; 159-208.
Zhao Y, Qiu Q, Mahdi F, Shariat-Madar Z, Rojkjaer R, Schmaier AH. Assembly and activation of HK-PK complex on endothelial cells results in bradykinin liberation and NO formation. Am J Physiol Heart Circ Physiol 2001; 280: H1821-H1829.
Brown NJ, Nadeau JH, Vaughan DE. Selective stimulation of tissue-type plasminogen activator (t-PA) in vivo by infusion of bradykinin. Thromb Haemost 1997; 77: 522-5.
Maeda H, Akaike J, Wu J, Noguchi Y, Sakata Y. Bradykinin and nitric oxide in infectious disease and cancer. Immunopharmacology 1996; 33: 222-30.
Lin Y, Pixley RA, Colman RW. Kinetic analysis of the role of zinc in the interaction of domain 5 of high molecular weight kininogen (HK) with heparin. Biochemistry 2000; 39: 5104-10.
Herwald H, Morgelin M, Svensson HG, Sjobring U. Zinc-dependent conformational changes in domain D5 of high molecular mass kininogen modulates contact activation. Eur J Biochem 2001; 268: 396-404.
Motta G, Shariat-Madar Z, Mahdi F, Sampaio CA, Schmaier AH. Assembly of high molecular weight kininogen and activation of prekallikerein on cell matrix. Thromb Haemost 2001; 86: 840-7.
Dellalibera-Joviliano R, Reis ML, Donadi EA. Kinin system in lupus nephritis. Int Immunopharmacology 2001; 1: 1889-96.
Kahn R, Herwald H, Muller-Esterl W, Schmitt R, Sjogren AC, Truedsson L, Karpman D. Contact-system activation in children with vasculitis. Lancet 2002; 360: 535-41.
Gallimore MJ, Jones DW, Winter M, Wendel HP. Changes in high molecular weight kininogen levels during and after cardiopulmonary bypass surgery measured using a chromogenic peptide substrate assay. Blood Coagul Fibrinolysis 2002; 13: 561-8.
Merlo C, Wuillemin WA, Redondo M, Furlan M, Sulzer I, Kremer-Hovinga J, Binder BR, Lammle B. Elevated levels of plasma prekallikrein, high molecular weight kininogen and factor XI in coronary heart disease. Atherosclerosis 2002; 161: 261-7.
Sharma JN. Does the kinin system mediate in cardiovascular abnormalities? An overview J Clin Pharmacol 2003; 43: 1187-95.
Campbell DJ, Dixon B, Kladis A, Kemme M, Santamaria JD. Activation of the kallikrein-kinin system by cardiopulmonary bypass in humans. Am J Physiol Regul Integr Com Physiol 2001; 281: R1059-R1070.
Wilkinson-Berka JL, Fletcher EL. Angiotensin and bradykinin: targets for the treatment of vascular and neuro-glial pathology in diabetic retinopathy. Curr Pharm Dis 2004; 10: 3313-30.
Jaffa AA, Durazo-Arvizu R, Zheng D, Lackland DT, Srikanth S, Garvey WT, Schmaier AH; DCCT/EDIC Study Group. Plasma prekallikrein: a risk marker for hypertension and nephropathy in type 1 diabetes. Diabetes 2003; 52: 1215-21.
Sugi T, Makino T. Antiphospholipid antibodies and kininogens in pathologic pregnancies: a review. Am J Reprod Immunol 2002; 47: 283-8.
Sriskandan S, Kemball-Cook G, Moyes D, Canvin J, Tuddenham E, Cohen J. Contact activation in shock caused by invasive group A Streptococcus pyogenes. Crit Care Med 2002; 28: 3684-91.
Shariat-Madar Z, Schmaier AH. The plasma kallikrein-kinin and renin angiotensin systems in blood pressure regulation in sepsis. J Endotoxin Res 2004; 10: 3-13.
Zhang JC, Claffey K, Sakthivel R, Darzynkiewicz Z, Shaw DE, Leal J, Wang YC, Lu FM, McCrae KR. Two-chain high molecular weight kininogen induces endothelial cell apoptosis and inhibits angiogenesis: partial activity within domain 5. FASEB J 2000; 14: 2589-600.
Juarez JC, Guan X, Shipulina NV, Plunkett ML, Parry GC, Shaw DE, Zhang JC, Rabbani SA, McCrae KR, Mazar AP, Morgan WT, Donate F. Histidine-proline-rich glycoprotein has potent antiangiogenic activity mediated through the histidine-proline-rich domain. Cancer Res 2002; 62: 5344-50.
Podolsky DK. Inflammatory bowel disease. N Engl J Med 2002; 347: 417-29.
Sartor RB. Pathogenesis and immune mechanisms of chronic inflammatory bowel diseases. Am J Gastroenterol 1997; 92: S5-S11.
Devani M, Cugno M, Vecchi M, Ferrero S, Di Berardino F, Avesani EC, Franchis R, Colman RW. Kallikrein-kinin system activation in Crohn’s disease: differences in intestinal and systemic markers. Am J Gastroenterol 2002; 97: 2026-32.
DeLa Cadena, Sartor RB, Adam A, Raymond B, Legris F, Colman RW. Role of kallikrein-kinin system in the pathogenesis of bacterial cell wall-induced inflammation and enterocolitis. Trans Assoc Am Physisicians 1992; 105: 229-37.
Sartor RB. Cytokines in intestinal inflammation; pathophysiological and clinical considerations. Gastroenterology 1994; 106: 533-9.
Warren JB, Loi RK. Captopril increases skin microvascular blood flow secondary to bradykinin, nitric oxide, and prostaglandins. FASEB J 1995; 9: 411-18.
Bhoola KD, Figueroa CD, Worthy K. Bioregulation of kinins: kallikreins, kininogens, and kininases. Pharmacol Rev 1992; 44: 1-80.
Duka I, Kintsurashvili E, Gavras I, Johns C, Bresnahan M, Gavras H. Vasoactive potential of the b (1) bradykinin receptor in normotension and hypertension. Cir Res 2001; 88: 275-81.
Sartor RB, Rath HC. Lichtman SN, van Tol EA. Animal models of intestinal and joint inflammation. Bailleres Clin Rheumatol 1996; 10: 55-76.
Sartor RB, DeLa Cadena RA, Green KD, Stadnicki A, Davis SW, Schwab JH, Adam AA, Raymond P, Colman RW. Selective kallikrein-kinin system activation in inbred rats differentially susceptible to granulomatous enterocolitis. Gastroenterology 1996; 110: 1467-81.
Stadnicki A, Gonciarz M, Niewiarowski TJ, Hartleb J, Rudnicki M, Merrell NB, DeLa Cadena RA, Colman RW. Activation of plasma contact and coagulation systems and neutrophils in the active phase of ulcerative colitis. Dig Dis Sci 1997; 42: 2356-66.
Isordia-Salas I, Pixley RA, Li F, Sainz I, Sartor RB, Adam A, Colman RW. Kininogen deficiency modulates chronic intestinal inflammation in genetically susceptible rats. Am J Physiol Gastrointest Liver Physiol 2002; 283: G 180-G186.
Isordia-Salas I, Pixley RA, Li F, Sainz I, Balfour Sartor R, Adam A, Colman RW. Chronic intestinal inflammation and angiogenesis in genetically susceptible rats is modulated by kininogen deficiency. Int Immunopharmacol 2002; 2: 1895-905.
Isordia-Salas I, Pixley RA, Parekh H, Kunapuli SP, Li F Stadnicki A, Lin Y, Sartor RB, Colman RW. The mutation Ser511N leads to N-glycosylation and increases the cleavage of high molecular weight kininogen in rats genetically susceptible to inflammation. Blood 2003; 102: 2835-42.
Corrigal VM, Panayi GS. Autoantigens and immune pathways in rheumatoid arthritis. Crit Rev Immunol 2002; 22: 281-93.
Bond AP, Lemon M, Dieppe PA, Bhoola KD. Generation of kinins in synovial fluid from patients with arthropathy. Immunopharmacology 1997; 36: 209-16.
Selwyn BM, Figueroa CD, Fink KE, Swan A, Dieppe PA, Bhoola KD. A tissue kallikrein in the sinovial fluid of patients with rheumatoid arthritis. Ann Rheum Dis 1989; 48; 128-33.
DeLa Cadena RA, Laskin KJ, Pixley RA, Sartor RB, Schwab JH, Back N, Bedi GS, Fisher RS, Colman RW. Role of kallikrein-kinin system in pathogenesis of bacterial cell-wall-induced inflammation. Am J Physiol 1991; 260: G213-G219.
DeLa Cadena RA, Colman RW. The sequence HGLGHGHEQQHGLGHGH in the light chain of high molecular weight kininogen serves as a primary feature for zinc-dependant binding to an anionic surface. Prot Sci 1992; 1: 151-60.
Espinola RG, Uknis A, Sainz IM, Isordia-Salas I, Pixley RA, DeLa Cadena R, Long W, Agelan A, Gaughan J, Adam A, Colman RW. Am J Pathol 2004; 165: 969-76.
Colman RW, Pixley RA, Sainz I, Song JS, Isordia-Salas I, Muhamed SN, Powell JA Jr, Mousa SA. Inhibition of angiogenesis by antibody blocking the action of proangiogenic high-molecular-weight kininogen. J Thromb Haemost 2003; 1: 164-70.
Colman RW. The contact system and angiogenesis: potential for therapeutic control of malignancy. Semin Thromb Hemost 2004; 30: 45-61.
Guo YL, Wang S, Colman RW. Kininostatin as an antiangiogénico inhibitor; what we know and what we do not know. Int Immunopharmacol 2002; 2: 1931-40.
Rojkjaer R, Hasan AA, Motta G, Schousboe I, Schmaier AH. Factor XII does not initiate prekallikrein activation on endothelial cells. Thromb Haemost 1998; 80: 74-81.
Marceau F, Regoli D. Bradykinin receptors ligands: therapeutic perspectives. Nat Rev Drug Discov 2004; 3: 845-52.
Bockmann S, Paegelow I. Kinins and kinin receptors: importance for the activation of leukocyte. J Leukoc Biol 2000; 68: 587-92.
Couture R, Harrisson M, Vianna RM, Cloutier F. Kinin receptors in pain and inflammation. Eur J Pharmacol 2001; 429: 161-76.
Uknis AB, DeLa Cadena RA, Janardham R, Sartor RB, Whalley ET, Colman R W. Bradykinin receptor antagonist type 2 attenuate the inflammatory changes in peptidoglycan-induced acute arthritis in the Lewis rat. Inflamm Res 2001; 50: 149-55.
Sainz IM, Uknis AB, Isordia-Salas I, DeLa Cadena RA, Pixley RA, Colman RW. Interactions between bradykinin (BK) and cell adhesion molecule (CAM) expression in peptidoglycan-polysaccharide (PG-PS)-induced arthritis. FASEB J 2004; 18: 887-9.
Stewart JM. Bradykinin antagonists as anti-cancer agents. Curr Pharm Des 2003; 9: 2036-42.
Yung Y, Lim F, Khan MM, Kunapuli SP, Rick L, Colman RW, Cooper SL. High molecular weight kininogen preadsorbed to glass surface markedly neuthrophil adhesion. Biomaterials 2000; 21: 405-14.
Shariat-Madar Z, Mahdi F, Schmaier AH. Recombinant prolylcarboxypeptidase activates plasma prekallikrein. Blood 2004; 103: 4554-61.
Al-Fakhri N, Chavakis T, Schmidt-Woll, Huang B, Cherian SM, Bobryshev YV, Lord RS, Katz N, Preissner KT. Induction of apoptosis in vascular cells by plasminogen activator inibitor-1 and high molecular weight kininogen correlates with their anti-adhesive properties. Biol Chem 2003; 384: 423-35.
Shariat-Madar Z, Mahdi F, Schmaier AH. Identification and characterization of prolylcarboxypeptidase as an endothelial cell prekallikrein activator. J Biol Chem 2002; 277: 17962-9.
Schmaier AH. Plasma kallikrein-system a revised hypothesis for its activation and its physiologic contributions. Curr Opin Hematol 2002; 7: 261-5.
Song JS, Sainz IM, Cosenza SC, Isordia-Salas I, Bior A, Bradford HN, Guo YL, Pixley RA, Reddy EP, Colman RW. Inhibition of tumor angiogenesis in vivo by monoclonal antibody targeted to domain 5 of high molecular weight kininogen. Blood 2004; 104: 2065-72.
Herwald H, Renne T, Meijers JC, Chung DW, Page JD, Colman RW, Muller-Esterl W. Mapping of the discontinuous kininogen binding site of prekallikrein. A distal binding segment is located in the heavy chain domain A4. J Biol Chem 1996; 271: 13061-7.
Shariat-Madar Z, Mahdi F, Schmaier AH. Assembly and activation of the plasma kallikrein-kinin system a new interpretation. Int Immunopharmacol 2002; 2: 1841-9.
Chavakis T, Kanse SM, Lupu F, Hammes HP, Muller-Esterl W, Pixley RA, Colman RW, Preissner KT. Different mechanisms define the antiadhesive function of high molecular weight kininogen in integrin-and urokinase receptor-dependent interactions. Blood 2000; 96: 514-22.
Hayashi I, Amano H, Yoshida S, Kamata K, Kamata M, Inukai M, Fujita T, Kumagai Y, Furudate S, Majima M. Suppressed angiogenesis in kininogen-deficiencies. Lab Invest 2002; 82: 871-80.
Parenti A, Morbidelli L, Ledda F, Granger HJ, Ziche M. The bradykinin/B1 receptor promotes angiogenesis by up-regulation of endogenous FGF-2 in endothelium via the nitric oxide synthase pathway. FASEB J 2001; 15: 1487-9.
King KL, Cidlowski JA. Cell cycle regulation and apoptosis. Annu Rev Physiol 1988; 60: 601-17.
Guo YL, Wang S, Colman RW. Kininostatin, an antiangiogenic inhibitor, inhibits proliferation and induces apoptosis of human endothelial cells. Arterioscler Thromb Vasc Biol 2001; 21: 1427-33.
Folkman J. Fundamental concepts of the angiogenic process. Curr Mol Med 2003; 3: 643-51.
Browder T, Folkman J, Pirie-Shepherd S. The hemostatic system as a regulator of angiogenesis. J Biol Chem 2000; 275: 1521-4.
O’Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, Lane WS, Cao Y, Sage EH, Folkman J. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 1994; 79: 315-28.
O’Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 1997; 88: 277-85.
Colman RW, Jameson BA, Lin Y, Johnson D, Mousa SA. Domain 5 of high molecular weight kininogen (kininostatin) down-regulates endothelial cell proliferation and migration and inhibits angiogenesis. Blood 2000; 95: 543-50.
Colman RW. Inhibition of angiogenesis by a monoclonal antibody to kininogen as well as by kininostatin, which block proangiogenic high molecular weight kininogen. Int Immunopharmacol 2002; 2: 1887-94.