2015, Número 4
<< Anterior Siguiente >>
Rev Cubana Invest Bioméd 2015; 34 (4)
Arquetipos, terminologías e interoperabilidad semántica en salud
Castrillón-Betancur JC, Flórez-Arango JF
Idioma: Español
Referencias bibliográficas: 44
Paginas: 365-377
Archivo PDF: 193.10 Kb.
RESUMEN
La falta de aplicación de estándares repercute en lo negativo en la calidad de la
prestación de servicios de salud, lo cual se ve reflejado en un alto porcentaje de
errores médicos prevenibles, que son causados por la falta de acceso inmediato a la
información de salud. Es por esto que en la actualidad, existe una necesidad hacia
sistemas distribuidos e interconectados, que favorezcan la representación y
comunicación de los sistemas de historia clínica electrónica, de tal forma que
permitan la interoperabilidad. Es aquí donde la arquitectura de modelo dual surge
como una solución a los problemas clásicos de evolución y mantenimiento de los
sistemas de información y por consiguiente, como la piedra angular para alcanzar la
llamada interoperabilidad semántica. La interoperabilidad es la clave para la
atención efectiva en el ámbito de la salud ya que aumenta la calidad de la atención,
reduce los costos, y mejora los servicios, lo que se traduce en una atención más
segura y eficiente. En la presente revisión, se pretende como objetivo, describir los
elementos más importantes a la hora de expresar la información clínica, como son
las terminologías para codificar la información, un modelo de referencia para
expresar las características generales de los componentes de un registro clínico, y
de unos arquetipos que definen los conceptos clínicos presentes; todos estos como
componentes indispensables para alcanzar dicha interoperabilidad.
REFERENCIAS (EN ESTE ARTÍCULO)
Fickenscher KM. President's column: interoperability the 30 % solution: from dialog and rhetoric to reality. J Am Med Inform Assoc. 2013;20(3):593-4.
Serrano MD, Sebastián T, Maldonado J, Navalón R, Robles M, Gómez A, et al. Utilidad de los arquetipos ISO 13606 para representar modelos clínicos detallados. RevistaeSaludcom. 2009;5(18):11.
Beale T. Archetypes: Constraint-based Domain Models for Future-proof Information Systems. [Internet]. Mooloolah, Qld, Australia: OpenEHR. 2002 [citado 5 Mar 2015]; Disponible en: http://www.openehr.org/files/resources/publications/archetypes/ archetypes_beale_oopsla_2002.pdf
Gutierrez PP. EHRGen: Generador de Sistemas Normalizados de Historia Clínica Electrónica Basados en openEHR. [Internet] Montevideo, Uruguay: Academia Edu. 2012 [citado 5 Mar 2015]; Disponible en: http://www.academia.edu/9882453/EHRGen_Generador_de_Sistemas_Normalizad os_ de_Historia_Cl%C3%ADnica_Electr%C3%B3nica_Basados_en_openEHR
Tapuria A, Kalra D, Kobayashi S. Contribution of Clinical Archetypes, and the Challenges, towards Achieving Semantic Interoperability for EHRs. Healthc Inform Res. 2013;19(4):286-92.
Martinez-Costa C, Menarguez-Tortosa M, Fernandez-Breis JT, Maldonado JA. A model-driven approach for representing clinical archetypes for Semantic Web environments. J Biomed Inform. 2009;42(1):150-64.
Menarguez-Tortosa M, Fernandez-Breis JT. OWL-based reasoning methods for validating archetypes. J Biomed Inform. 2013;46(2):304-17.
Santos MR, Bax MP, Kalra D. Dealing with the archetypes development process for a regional EHR system. Appl Clin Inform. 2012;3(3):258-75.
OpenEHR. The Clinical Knowledge Manager (CKM). [Internet]: OpenEHR. 2007 [citado 5 de Marzo 2015]; Disponible en: http://www.openehr.org/ckm/
Garde S, Hovenga E, Buck J, Knaup P. Expressing clinical data sets with openEHR archetypes: a solid basis for ubiquitous computing. Int J Med Inform. 2007;76(Suppl 3):S334-41.
Braun M, Brandt AU, Schulz S, Boeker M. Validating archetypes for the Multiple Sclerosis Functional Composite. BMC Med Inform Decis Mak. 2014;14:64.
Sundvall E, Qamar R, Nystrom M, Forss M, Petersson H, Karlsson D, et al. Integration of tools for binding archetypes to SNOMED CT. BMC Med Inform Decis Mak. 2008;8(Suppl 1):S7.
Meizoso Garcia M, Iglesias Allones JL, Martinez Hernandez D, Taboada Iglesias MJ. Semantic similarity-based alignment between clinical archetypes and SNOMED CT: an application to observations. Int J Med Inform. 2012;81(8):566-78.
Lezcano L, Sanchez-Alonso S, Sicilia MA. Associating clinical archetypes through UMLS Metathesaurus term clusters. J Med Syst. 2012;36(3):1249-58.
Runciman W, Hibbert P, Thomson R, Van Der Schaaf T, Sherman H, Lewalle P, et al. Towards an International Classification for Patient Safety: key concepts and terms. Int J Qual Health Care. 2009;21(1):18-26.
Chute CG. Clinical classification and terminology: some history and current observations. J Am Med Inform Assoc. 2000;7(3):298-303.
Lathrop SL, Davis WL, Nolte KB. Medical terminology coding systems and medicolegal death investigation data: searching for a standardized method of electronic coding at a statewide medical examiner's office. J Forensic Sci. 2009;54(1):207-11.
Hardiker NR, Hoy D, Casey A. Standards for nursing terminology. J Am Med Inform Assoc. 2000;7(6):523-8.
Barra DC, Sasso GT. [Data standards, terminology and classification systems for caring in health and nursing]. Rev Bras Enferm. 2011;64(6):1141-9.
Kahn MG, Bailey LC, Forrest CB, Padula MA, Hirschfeld S. Building a common pediatric research terminology for accelerating child health research. Pediatrics. 2014;133(3):516-25.
WHO. International Classification of Diseases (ICD). [Internet]. Ginebra: WHO. 2014 [citado 5 Mar 2015]. Disponible en: http://www.who.int/classifications/icd/en/
Harris ST, Zeng X, Ross T, Ford L. International classification of diseases, 10th revision training: what coders are saying. Health Care Manag (Frederick). 2014;33(1):91-3.
Cimino JJ, Zhu X. The practical impact of ontologies on biomedical informatics. Yearb Med Inform. 2006;124-35.
LOINC. Logical Observation Identifiers Names and Codes (LOINC). [Internet]. Indianápolis: LOINC. 2014 [citado 5 Mar 2015]. Disponible en: http://loinc.org/
Bakken S, Cimino JJ, Haskell R, Kukafka R, Matsumoto C, Chan GK, et al. Evaluation of the clinical LOINC (Logical Observation Identifiers, Names, and Codes) semantic structure as a terminology model for standardized assessment measures. J Am Med Inform Assoc. 2000;7(6):529-38.
IHTSDO. The Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT). [Internet] Copenhagen: IHTSDO. 2014 [citado 5 Mar 2015]. Disponible en: http://www.ihtsdo.org/snomed-ct/
NLM. Unified Medical Language System (UMLS). [Internet]. Rockville: NLM. 2014 [citado 5 Mar 2015]. Disponible en: http://www.nlm.nih.gov/research/umls/
Bodenreider O. The Unified Medical Language System (UMLS): integrating biomedical terminology. Nucleic Acids Res. 2004;32:D267-70.
Hammond WE. eHealth interoperability. Stud Health Technol Inform. 2008;134:245-53.
Namli T, Dogac A. Testing conformance and interoperability of eHealth applications. Methods Inf Med. 2010;49(3):281-9.
Garde S, Knaup P, Hovenga E, Heard S. Towards semantic interoperability for electronic health records. Methods Inf Med. 2007;46(3):332-43.
Muñoz Carrero A, Romero Gutierrez A, Marco Cuenca G, Abad Acebedo A, Cáceres Tello J, Sánchez de Madariaga R, et al. Manual práctico de interoperabilidad semántica para entornos sanitarios basada en arquetipos. [Internet]. Madrid: Unidad de Investigación en telemedicina y eSalud. 2013 [citado 5 Mar 2015]. Disponible en: http://gesdoc.isciii.es/gesdoccontroller?action=download&id=29/11/2013- 45c9ee530c
Goossen W, Goossen-Baremans A, van der Zel M. Detailed clinical models: a review. Healthc Inform Res. 2010;16(4):201-14.
Bisbal J, Berry D. An analysis framework for electronic health record systems. Interoperation and collaboration in shared healthcare. Methods Inf Med. 2011;50(2):180-9.
ISO. The CEN/ISO EN13606 standard. [Internet]. 2011 [citado 5 Mar 2015]. Disponible en: http://www.en13606.org/the-ceniso-en13606-standard
Beale T, Heard S. Archetype Definition Language [Internet]. 2008 [citado 5 Mar 2015]. Disponible en: http://www.openehr.org/releases/1.0.2/architecture/am/adl.pdf
Martinez Costa C, Menarguez Tortosa M, Fernandez Breis JT. An approach for the semantic interoperability of ISO EN 13606 and OpenEHR archetypes. J Biomed Inform. 2010;43(5):736-46.
OpenEHR. OpenEHR Foundation. [Internet]. 2014 [citado 5 Mar 2015]. Disponible en: http://www.openehr.org/home
Beale T, Heard S, Kalra D, Lloyd D. OpenEHR EHR Information Model. [Internet]. 2008 [citado 5 Mar 2015]. Disponible en: http://www.openehr.org/releases/1.0.2/architecture/rm/ehr_im.pdf
Costa CM, Menarguez Tortosa M, Fernandez Breis JT. Clinical data interoperability based on archetype transformation. J Biomed Inform. 2011;44(5):869-80.
Marcos M, Maldonado JA, Martinez-Salvador B, Bosca D, Robles M. Interoperability of clinical decision-support systems and electronic health records using archetypes: a case study in clinical trial eligibility. J Biomed Inform. 2013;46(4):676-89.
Legaz-Garcia MD, Menarguez-Tortosa M, Fernandez-Breis JT, Chute CG, Tao C. Transformation of standardized clinical models based on OWL technologies: from CEM to OpenEHR archetypes. J Am Med Inform Assoc. 2015;0:1-9.
Maldonado JA, Moner D, Bosca D, Fernandez-Breis JT, Angulo C, Robles M, et al. LinkEHR-Ed: a multi-reference model archetype editor based on formal semantics. Int J Med Inform. 2009;78(8):559-70.
Moner D, Moreno A, Maldonado JA, Robles M, Parra C. Using archetypes for defining CDA templates. Stud Health Technol Inform. 2012;180:53-7.