2016, Número 1
<< Anterior Siguiente >>
Rev Mex Cardiol 2016; 27 (1)
Efecto de la metformina sobre la obesidad asociada a fenotipos metabólicos
Navarrete-Tapia U, Narváez C, Izaguirre-Gutiérrez F, Domínguez-Borgua A, Gutiérrez-Salmeán G, Ceballos G, Meaney E
Idioma: Ingles.
Referencias bibliográficas: 43
Paginas: 26-33
Archivo PDF: 245.38 Kb.
RESUMEN
Antecedentes: Se sabe que los diferentes fenotipos metabólicos asociados a la obesidad imponen un riesgo cardiovascular distinto. La metformina es un fármaco con amplias y diversas aplicaciones en trastornos cardiometabólicos.
Objetivos: Determinar el efecto del tratamiento con metformina sobre el perfil lipídico, las alteraciones del metabolismo de carbohidratos, y sobre las variables antropométricas observadas en los fenotipos metabólicos de la obesidad.
Material y métodos: Se realizó un ensayo clínico «antes y después» para evaluar la respuesta al tratamiento con metformina (850 mg/día durante 24 semanas). Variables como peso, índice de masa corporal (IMC), índice cintura-cadera (ICC), presión arterial, glucemia, colesterol total y sus fracciones HDL, LDL, triglicéridos e índices lipoproteicos CT/c-HDL y TG/c-HDL fueron analizados al inicio y al final del estudio.
Resultados: El c-HDL y el índice CT/c-HDL tuvieron una mejoría significativa posterior al tratamiento. Se observó un descenso en c-LDL. Se obtuvo un descenso de peso promedio de 0.48 kg y paralelo a ello una mejora del IMC. La presión arterial tanto sistólica como diastólica no mostró cambios significativos.
Conclusiones: La administración de metformina tuvo un efecto benéfico sobre el perfil lipídico, la reducción del peso corporal y algunos predictores de riesgo cardiovascular.
REFERENCIAS (EN ESTE ARTÍCULO)
Mendis S, Davis S, Norrving B. Organizational update: the world health organization global status report on noncommunicable diseases 2014; one more landmark step in the combat against stroke and vascular disease. Stroke. 2015; 46 (5): e121-e122.
Van Gaal LF, Mertens IL, De Block CE. Mechanisms linking obesity with cardiovascular disease. Nature. 2006; 444 (7121): 875-880.
Bays H. Central obesity as a clinical marker of adiposopathy; increased visceral adiposity as a surrogate marker for global fat dysfunction. Curr Opin Endocrinol Diabetes Obes. 2014; 21 (5): 345-351.
Hashimoto Y, Tanaka M, Okada H, Senmaru T, Hamaguchi M, Asano M et al. Metabolically healthy obesity and risk of incident CKD. Clin J Am Soc Nephrol. 2015; 10 (4): 578-583.
Ruderman NB, Schneider SH, Berchtold P. The “metabolically-obese”, normal-weight individual. Am J Clin Nutr. 1981; 34 (8): 1617-1621.
Samaropoulos XF, Hairston KG, Anderson A, Haffner SM, Lorenzo C, Montez M et al. A metabolically healthy obese phenotype in hispanic participants in the IRAS family study. Obesity (Silver Spring). 2013; 21 (11): 2303-2309.
Karelis AD, Faraj M, Bastard JP, St-Pierre DH, Brochu M, Prud’homme D et al. The metabolically healthy but obese individual presents a favorable inflammation profile. J Clin Endocrinol Metab. 2005; 90 (7): 4145-4150.
Manu P, Ionescu-Tirgoviste C, Tsang J, Napolitano BA, Lesser ML, Correll CU. Dysmetabolic Signals in “Metabolically Healthy”. Obes Res Clin Pract. 2012; 6 (1): e9-e20.
Cherqaoui R, Kassim TA, Kwagyan J, Freeman C, Nunlee-Bland G, Ketete M et al. The metabolically healthy but obese phenotype in African Americans. J Clin Hypertens (Greenwich). 2012; 14 (2): 92-96.
Denis GV, Obin MS. Metabolically healthy obesity’: origins and implications. Mol Aspects Med. 2013; 34 (1): 59-70.
Wildman RP, Muntner P, Reynolds K, McGinn AP, Rajpathak S, Wylie-Rosett J et al. The obese without cardiometabolic risk factor clustering and the normal weight with cardiometabolic risk factor clustering: prevalence and correlates of 2 phenotypes among the US population (NHANES 1999-2004). Arch Intern Med. 2008; 168 (15): 1617-1624.
Lee K. Metabolically obese but normal weight (MONW) and metabolically healthy but obese (MHO) phenotypes in Koreans: characteristics and health behaviors. Asia Pac J Clin Nutr. 2009; 18 (2): 280-284.
Gomez-Huelgas R, Narankiewicz D, Villalobos A, Warnberg J, Mancera-Romero J, Cuesta AL et al. Prevalence of metabolically discordant phenotypes in a mediterranean population-The IMAP study. Endocr Pract. 2013; 19 (5): 758-768.
Fanghanel-Salmon G, Gutierrez-Salmean G, Samaniego V, Meaney A, Sanchez-Reyes L, Navarrete U et al. Obesity phenotypes in urban middle-class cohorts; the prit-lindavista merging evidence in Mexico: the opus prime study. Nutr Hosp. 2015; 32 (01): 182-188.
American Diabetes A. Standards of medical care in diabetes-2015 abridged for primary care providers. Clin Diabetes. 2015; 33 (2): 97-111.
Rena G, Pearson ER, Sakamoto K. Molecular mechanism of action of metformin: old or new insights? Diabetologia. 2013; 56 (9): 1898-1906.
Kappe C, Patrone C, Holst JJ, Zhang Q, Sjoholm A. Metformin protects against lipoapoptosis and enhances GLP-1 secretion from GLP-1-producing cells. J Gastroenterol. 2013; 48 (3): 322-332.
Ikeda T, Iwata K, Murakami H. Inhibitory effect of metformin on intestinal glucose absorption in the perfused rat intestine. Biochem Pharmacol. 2000; 59 (7): 887-890.
Lupi R, Del Guerra S, Fierabracci V, Marselli L, Novelli M, Patane G et al. Lipotoxicity in human pancreatic islets and the protective effect of metformin. Diabetes. 2002; 51 (Suppl 1): S134-S137.
Cicero AF, Tartagni E, Ertek S. Metformin and its clinical use: new insights for an old drug in clinical practice. Arch Med Sci. 2012; 8 (5): 907-917.
Yanovski JA, Krakoff J, Salaita CG, McDuffie JR, Kozlosky M, Sebring NG et al. Effects of metformin on body weight and body composition in obese insulin-resistant children: a randomized clinical trial. Diabetes. 2011; 60 (2): 477-485.
Diehl LA, Fabris BA, Barbosa DS, De Faria EC, Wiechmann SL, Carrilho AJ. Metformin increases HDL3-cholesterol and decreases subcutaneous truncal fat in nondiabetic patients with HIV-associated lipodystrophy. AIDS Patient Care STDS. 2008; 22 (10): 779-786.
Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009; 120 (16): 1640-1645.
Pickering TG, Hall JE, Appel LJ, Falkner BE, Graves J, Hill MN et al. Recommendations for blood pressure measurement in humans and experimental animals: part 1: blood pressure measurement in humans: a statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research. Circulation. 2005; 111 (5): 697-716.
Meaney E, Vela A, Samaniego V, Meaney A, Asbun J, Zempoalteca JC et al. Metformin, arterial function, intima-media thickness and nitroxidation in metabolic syndrome: the mefisto study. Clin Exp Pharmacol Physiol. 2008; 35 (8): 895-903.
Zhang Y, Hu C, Hong J, Zeng J, Lai S, Lv A, et al. Lipid profiling reveals different therapeutic effects of metformin and glipizide in patients with type 2 diabetes and coronary artery disease. Diabetes Care. 2014; 37 (10): 2804-2812.
Hollenbeck CB, Johnston P, Varasteh BB, Chen YD, Reaven GM. Effects of metformin on glucose, insulin and lipid metabolism in patients with mild hypertriglyceridaemia and non-insulin dependent diabetes by glucose tolerance test criteria. Diabetes Metab. 1991; 17 (5): 483-489.
Rodriguez Y, Giri M, Feyen E, Christophe AB. Effect of metformin vs. placebo treatment on serum fatty acids in non-diabetic obese insulin resistant individuals. Prostaglandins Leukot Essent Fatty Acids. 2004; 71 (6): 391-397.
Fendri S, Debussche X, Puy H, Vincent O, Marcelli JM, Dubreuil A et al. Metformin effects on peripheral sensitivity to insulin in non diabetic obese subjects. Diabetes Metab. 1993; 19 (2): 245-249.
Pedroza-Tobias A, Trejo-Valdivia B, Sanchez-Romero LM, Barquera S. Classification of metabolic syndrome according to lipid alterations: analysis from the Mexican National Health and Nutrition Survey 2006. BMC Public Health. 2014; 14: 1056.
Aguilar-Salinas CA, Olaiz G, Valles V, Torres JM, Gomez PFJ, Rull JA et al. High prevalence of low HDL cholesterol concentrations and mixed hyperlipidemia in a Mexican nationwide survey. J Lipid Res. 2001; 42 (8): 1298-1307.
Quintero-Castillo D, Luz-Araujo H, Guerra-Velazquez M, Reyna-Villasmil E, Santos Bolivar J, Torres-Cepeda D et al. Lipid profile in obese and non-obese women with polycystic ovary syndrome treated with metformin. Endocrinol Nutr. 2010; 57 (6): 262-267.
Giugliano D, De Rosa N, Di Maro G, Marfella R, Acampora R, Buoninconti R et al. Metformin improves glucose, lipid metabolism, and reduces blood pressure in hypertensive, obese women. Diabetes Care. 1993; 16 (10): 1387-1390.
Aghahosseini M, Aleyaseen A, Safdarian L, Moddaress-Hashemi S, Mofid B, Kashani L. Metformin 2,500 mg/day in the treatment of obese women with polycystic ovary syndrome and its effect on weight, hormones, and lipid profile. Arch Gynecol Obstet. 2010; 282 (6): 691-694.
O’Donnell CJ, Elosua R. Cardiovascular risk factors. Insights from Framingham Heart Study. Rev Esp Cardiol. 2008; 61 (3): 299-310.
Pereira MA, Weggemans RM, Jacobs DR, Jr., Hannan PJ, Zock PL, Ordovas JM et al. Within-person variation in serum lipids: implications for clinical trials. Int J Epidemiol. 2004; 33 (3): 534-541.
Marcovina SM, Gaur VP, Albers JJ. Biological variability of cholesterol, triglyceride, low- and high-density lipoprotein cholesterol, lipoprotein(a), and apolipoproteins A-I and B. Clin Chem. 1994; 40 (4): 574-578.
Millan J, Pinto X, Munoz A, Zuniga M, Rubies-Prat J, Pallardo LF et al. Lipoprotein ratios: Physiological significance and clinical usefulness in cardiovascular prevention. Vasc Health Risk Manag. 2009; 5: 757-765.
Gaziano JM, Hennekens CH, O’Donnell CJ, Breslow JL, Buring JE. Fasting triglycerides, high-density lipoprotein, and risk of myocardial infarction. Circulation. 1997; 96 (8): 2520-2525.
Stampfer MJ, Sacks FM, Salvini S, Willett WC, Hennekens CH. A prospective study of cholesterol, apolipoproteins, and the risk of myocardial infarction. N Engl J Med. 1991; 325 (6): 373-381.
Quispe R, Manalac RJ, Faridi KF, Blaha MJ, Toth PP, Kulkarni KR et al. Relationship of the triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio to the remainder of the lipid profile: The very large database of lipids-4 (VLDL-4) study. Atherosclerosis. 2015; 242 (1): 243-250.
Weiler MCS, Wollinger LM, Marin D, Genro JP, Contini V, Morelo Dal Bosco S. Waist-to-height ratio (WHtR) and triglyceride to HDL-C ratio (TG/HDL-c) as predictors of cardiometabolic risk. Nutr Hosp. 2015; 31 (5): 2115-2121.
Maturu A, DeWitt P, Kern PA, Rasouli N. The triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio as a predictor of beta-cell function in African American women. Metabolism. 2015; 64 (5): 561-565.