2015, Número 259
<< Anterior Siguiente >>
16 de abril 2015; 54 (259)
Ciliopatías: bases moleculares y celulares en enfermedades del sistema nervioso
Francis ZD, Ramírez CZ, González NL
Idioma: Español
Referencias bibliográficas: 60
Paginas: 61-74
Archivo PDF: 114.48 Kb.
RESUMEN
Durante mucho tiempo se descartó la importancia estructural y funcional del cilio primario. El avance tecnológico a inicios del presente siglo ha propiciado la comprensión de su relevancia. Debido a su amplia distribución celular, su papel emergente en la transducción de importantes vías de señalización y sus disfunciones, se ha visto implicada en un amplio espectro de enfermedades humanas denominadas ciliopatías, en la que son hallazgos comunes los defectos neurológicos. Reconocer cómo están involucrados los genes asociados a los cilios en diversos síndromes neurológicos ha mejorado el entendimiento de las funciones del cilio primario en el SNC. De acuerdo con lo que se viene diciendo, luego de la revisión de 61 referencias bibliográficas, este análisis pretende describir la relación molecular y morfofuncional de las ciliopatías en el organismo. El conocimiento del cilio primario y del desempeño que se le ha adscrito, permitirá la elucidación de un número importante de enfermedades genéticas asociadas a su disfunción.
REFERENCIAS (EN ESTE ARTÍCULO)
Bloodgood, R. Sensory reception is an attribute of both primary cilia and motile cilia. Journal of Cell Science. 2010; 123 (4), 505-509. 2.Ward CJ, Yuan D, Masyuk TV, Wang X, Punyashthiti R, Whelan S et al. Cellular and subcellular localization of the ARPKD protein; fibrocystin is expressed on primary cilia. Hum Mol Genet. 2003; 12(20):2703–2710
Li JB, Gerdes JM, Haycraft CJ, Fan Y, Teslovich TM, May-Simera H et al. Comparative genomics identifies a flagellar and basal body proteome that includes the BBS5 human disease gene. Cell 2004; 117:541–52.
Gherman A, Davis EE, Katsanis N. The ciliary proteome database: an integrated community resource for the genetic and functional dissection of cilia. Nat Genet 2006; 38:961–2
Kavita P, Davis E, Katsanis N. Unique among ciliopathies: primary ciliary dyskinesia, a motile cilia disorder. F1000Prime Reports 2015; 7:36
Satir P, Søre T. Christensen. Structure and function of mammalian cilia. Histochemistry and Cell Biology. 2009; 129 (6): 687–693
Lancaster MA, Gleeson JG. The primary cilium as a cellular signaling center: lessons from disease. Curr. Opin. Genet. Dev. 2009; 19 (3):220–9
Cardenas-Rodríguez M, Badano JL. Ciliary biology: Understanding the cellular and genetic basis of human ciliopathies. Am J Med Genet Part C Semin Med Genet. 2009. 151C:263–280
Hurd TW, Hildebrandt F. Mechanisms of Nephronophthisis and Related Ciliopathies. Nephron Exp. Nephrol. 2011; 118 (1): e9–e14
Davenport JR. An incredible decade for the primary cilium: A look at a once-forgotten organelle. AJP: Renal Physiology. 2005; 289 (6): F1159–F1169
Badano JL, Leitch CC, Ansley SJ, May-Simera H, Lawson S, Lewis RA, et al. Dissection of epistasis in oligogenic Bardet-Biedl syndrome. Nature. 2006; 439:326–30
Sharma N, Berbari NF, Yoder BK. Ciliary dysfunction in developmental abnormalities and diseases. Curr Top Dev Biol. 2008; 85:371–427
Badano JL, Mitsuma N, Beales PL, Katsanis N. The ciliopathies: An emergin class of human genetic disorders. Annu Rev Genomics Hum Genet. 2006; 7:125–148
Adams M, Smith CV, Logan C. Recent advances in the molecular pathology, cell biology and genetics of ciliopathies. J Med Genet. 2008; 45:257–267
Davis EE, Katsanis N. The ciliopathies: A transitional model into systems biology ofhuman genetic disease. Curr Opin Genet Dev. 2012; 22(3): 290–303
Valente EM, Rasim O, Gibbs E, Gleeson J. Primary cilia in neurodevelopmental disorders. Nature Reviews Neurology. 2014; 10, 27-36
Atkinson KF, Kathem SH, Jin X, Muntean BS, Abou-Alaiwi WA, Nauli AM, et al. Dopaminergic signaling within the primary cilia in the renovascular system. Front. Physiol 2015; 6:103
Tomer A, Andreia MM, Edmund K, Thomas K, Shankar S. Decoding cilia function: defining specialized genes required for compartmentalized cilia biogenesis. Cell. 2004; 117, 527–539
Sarmed K, Ashraf M, Surya M. The Roles of Primary cilia in Polycystic Kidney Disease. AIMS Mol Sci. 2014; 1(1): 27–46
Kleene S, Van Houten J. Electrical Signaling in Motile and Primary Cilia. Bioscience. 2014 64(12): 1092–1102
Jeong ho L, Silhavy J, Eun Lee, Al-Gazali L, Tomas S, Davis E et al. Evolutionarily Assembled cis- Regulatory Module at a Human Ciliopathy Locus. Science 2012; 335(6071): 966–969
Kasahara K, Kawakami Y, Kiyono T, Yonemra S, Kawamura Y, Era S, et al. Ubiquitin-proteasome system controls ciliogenesis at the initial step of axoneme extension. Nat. Commun. 2014; 5:5081
Miyamoto T. et al. The Microtubule-Depolymerizing Activity of a Mitotic Kinesin Protein KIF2A Drives Primary Cilia Disassembly Coupled with Cell Proliferation. Cell Reports 2015; 10, 664–673
Nigg EA, Stearns T. The centrosome cycle: Centriole biogen-esis, duplication and inherent asymmetries. Nat. Cell Biol. 2011; 13, 1154–1160
Kobayashi T, Dynlacht BD. Regulating the transition from centriole to basal body. J. Cell Biol. 2011; 193, 435–444
Breunig JJ, Sarkisian MR, Arellano JI, Morozov YM, Ayoub AE, Sojitra S, et al. Primary cilia regulate hippocampal neurogenesis by mediating sonic hedgehog signaling. Proc Natl Acad Sci 2008; 105:13127–13132
Danilov AI, Gomes-Leal W, Ahlenius H, Kokaia Z, Carlemalm E, Lindvall O. Ultrastructural and antigenic properties of neural stem cells and their progeny in adult rat subventricular zone. Glia 2009; 57:136–152
Moser J, Fritzler M, Rattner J. Ultrastructural characterization of primary cilia inpathologically characterized human glioblastomamultiforme (GBM) tumors. BMC Clinical Pathology 2014; 14:40
Badano JL, Mitsuma N, Beales PL, Katsanis N. The ciliopathies: an emerging class of human genetic disorders. Annu Rev Genomics Hum Genet 2006; 7:125–148
Wong SY, Seol AD, So PL, Ermilov AN, Bichakjian CK, Epstein EH, et al. Primary cilia can both mediate and suppress Hedgehog pathway-dependent tumorigenesis. Nat Med 2009; 15:1055–1061
Jeong Ho L, Gleeson J. The role of primary cilia in neuronal function. Neurobiol Dis. 2010; 38(2): 167–172
Aoife M, Philip L. Ciliopathies: an expanding disease spectrum. Pediatr Nephrol 2011; 26(7): 1039– 1056
Radheshyam P, Ajarshi B, Ituparna D, Uttara C. Association of Joubert Syndrome and Hirschsprung Disease. Indian Pediatric 2015; 61 (52)
Romani M, Micalizzi A, Valente E. Joubert syndrome: congenital cerebellar ataxia with the molar tooth. Lancet Neurol 2013;12: 894–905
Keppler-Noreuil K. Brain tissue- and region-specific abnormalities on volumetric MRI scans in 21 patients with Bardet–Biedl syndrome (BBS). BMC Med. Genet. 2011; 12, 101
Bennouna-Greene V, Kremer S, Stoetzel C, Christman D, Schuster C, Durand M, et al. Hippocampal dysgenesis and variable neuropsychiatric phenotypes in patients with Bardet–Biedl syndrome underline complex CNS impact of primary cilia. Clin. Genet 2011; 80(6): 523–531
Baker K, Northam GB, Chong WK, Banks T, Beales P, Baldeweg T. Neocortical and hippocampal volume loss in a human ciliopathy: a quantitative MRI study in Bardet–Biedl syndrome. Am. J. Med. Genet 2011; 155(1), 1–8
Carter C, Vogel TW, Zhang Q, Seo S, Swiderski RE, Moninger TO et al. Abnormal development of NG2+PDGFR-α+ neural progenitor cells leads to neonatal hydrocephalus in a ciliopathy mouse model. Nat. Med 2012; 18(12):1797–1804
Zhang Q, Nishimura D, Seo S, Vogel T, Morgan D, Searby C, et al. Bardet–Biedl syndrome 3 (Bbs3) knockout mouse model reveals common BBS-associated phenotypes and Bbs3 unique phenotypes. Proc. Natl Acad. Sci 2012; 108: 20678–20683
Zhang Q, Nishimura D, Vogel T, Shao J, Swiderski R, Yin T, et al. BBS7 is required for BBSome formation and its absence in mice results in Bardet–Biedl syndrome phenotypes and selective abnormalities in membrane protein trafficking. J Cell Sc. 2013; 126: 2372–2380
Poretti A, Vitiello G, Hennekam RC, Arrigoni F, Bertini E, Borgatti R, et al. Delineation and diagnostic criteria of oral–facial–digital syndrome type VI. Orphanet J. 2012; Rare Dis. 7(4)
Bisschoff I, Zeschnigk C, Horn D, Wellek B, Rieß A, Wessels M, et al. Novel mutations including deletions of the entire OFD1 gene in 30 families with type 1 orofaciodigital syndrome: a study of the extensive clinical variability. Hum. Mutat. 2013; 34, 237–247
Thomas S, Legendre M, Saunier S, Bessières B, Alby C, Bonnière M, et al. TCTN3 mutations cause Mohr–Majewski syndrome. Am. J. Hum. Genet. 2012;91, 372–378
Honkala H, Lahtela J, Fox H, Gentile M, Pakkasjärvi N, Salonen R, et al. Unraveling the disease pathogenesis behind lethal hydrolethalus syndrome revealed multiple changes in molecular and cellular level. Pathogenetics. 2009. 2
Dammermann A, Pemble H, Mitchell BJ, McLeod I, Yates JR, Kintner C, et al. The hydrolethalus syndrome protein HYLS-1 links core centriole structure to cilia formation. Genes Dev. 2009; 23: 2046– 2059
Jamsheer A, Sowińska A, Trzeciak T, Jamsheer-Bratkowska M, Geppert A, Latos-Bieleńska A. Expanded mutational spectrum of the GLI3 gene substantiates genotype–phenotype correlations. J. Appl. Genet. 2012; 53, 415–422
Breunig JJ, Sarkisian MR, Arellano JI, Morozov YM, Ayoub AE, Sojitra S, et al. Primary cilia regulate hippocampal neurogenesis by mediating sonic hedgehog signaling. Proc. Natl. Acad. Sci. 2008; 105:13127–13132
Giordano L, Vignoli A, Pinelli L, Brancati F, Accorsi P, Faravelli F, et al. Joubert syndrome with bilateral polymicrogyria: clinical and neuropathological findings in two brothers. Am. J. Med. Genet 2009; 149(7):1511–1515
Spampinato MV, Kraas J, Maria BL, Walton ZJ, Rumboldt Z, et al. Absence of decussation of the superior cerebellar peduncles in patients with Joubert syndrome. Am. J. Med. Genet., A. 2008; 146A:1389–1394
Mandl L, Megele R. Primary cilia in normal human neocortical neurons. Z. Mikrosk. Anat. Forsch. 1989; 103:425–430
Davenport JR, Watts AJ, Roper VC, Croyle MJ, van Groen T, Wyss JM, et al. Disruption of intraflagellar transport in adult mice leads to obesity and slow-onset cystic kidney disease. Curr Biol 2007; 17:1586–1594
Satir P. Cilia biology: stop overeating now! Curr Biol. 2007; 17:R963–R965
Tang Z, Lin MG, Stowe TR, Che S, Zhu M, Stearns T, et al. Autophagy promotes primary ciliogenesis by removing OFD1 from centriolar satellites. Nature 2013; 502, 254–257
Pampliega O, Orhon I, Patel B, Sridhan S, Díaz-Cantero A, Beau I, et al. Functional interaction between autophagy and ciliogenesis. Nature 2013; 502, 194–200
Pedersen LB, Rosenbaum JL. Intraflagellar transport (IFT) role in ciliary assembly, resorption and signalling. Curr. Top. Dev. Biol. 2008; 85, 23–61
Lim Y, Tang B. Getting into the cilia: Nature of the barrier(s). Mol. Membr. Biol. 2013; 30, 350–354
Szymanska K, Johnson CA. The transition zone: an essential functional compartment of cilia. Cilia 2012; 1, 10
Garcia-Gonzalo FR, et al. A transition zone complex regulates mammalian ciliogenesis and ciliary membrane composition. Nat. Genet. 2011; 43, 776–784
Chih B, Liu P, Chinn Y, Chalouni C, Komuves LG, Hass PE, et al. A ciliopathy complex at the transition zone protects the cilia as a privileged membrane domain. Nat. Cell Biol. 2012; 14, 61–72
Wei Q, Zhang Y, Li Y, Zhang Q, Ling K, Hu J. The BBSome controls IFT assembly and turnaround in cilia. Nat. Cell Biol. 2012; 14, 950–957
Zhang Q, Seo S, Bugge K, Stone EM, Sheffield VC. BBS proteins interact genetically with the IFT pathway to influence SHH-related phenotypes. Hum. Mol. Genet. 2012; 21, 1945–1953