2015, Número 2
<< Anterior Siguiente >>
Rev Cubana Med Trop 2015; 67 (2)
Estrés oxidative-nitrosativo y dengue: revisión sistemática de estudios in vivo e in vitro
Castro OR, Pinzón-Redondo HS, Alvis-Guzmán NR
Idioma: Ingles.
Referencias bibliográficas: 54
Paginas: 244-263
Archivo PDF: 175.42 Kb.
RESUMEN
Objetivo: sistematizar las evidencias i
n vivo/in vitro de la participación del estrés
oxidativo-nitrosativo en el curso de la infección por virus del dengue.
Métodos: revisión sistemática de estudios observacionales en las bases de datos (PubMed, EMBASE, The COCHRANE library, ScienceDirect, Scopus, SciELO, LILACS via Virtual Health Library, Google Scholar) utilizando las siguientes palabras clave: dengue, dengue virus, severe dengue, oxidative stress, nitrosative stress, antioxidants, oxidants, free radicals, oxidized lipid products, lipid peroxides, nitric oxide y nitric oxide synthase. La selección inicial fue realizada a partir del título y resumen excluyéndose: cartas para editor, revisiones, estudios con diseños epidemiológicos y estudios duplicados. A cada artículo seleccionado, se le revisó el objetivo o propósito, cultivos celulares o modelos animales utilizados, cepas víricas o tipo de anticuerpos utilizados, métodos y valores de los marcadores de estrés oxidativo-nitrosativo.
Resultados: de 4330 publicaciones encontradas, 32 estudios cumplieron con los criterios de inclusión. Se utilizaron primates no humanos y ratones knockout o tipo
salvaje para la obtención de las evidencias
in vivo. Los cultivos celulares más utilizados fueron de células mononucleares de sangre periférica y de células
endoteliales humanas. Las cepas más utilizadas en los ensayos correspondieron al serotipo 2 del virus dengue.
Conclusiones: existen evidencias
in vivo/in vitro que muestran la posible asociación entre el estrés oxidativo-nitrosativo con: producción de proteínas
relacionadas con la patogénesis del dengue, incremento en la susceptibilidad de ratones por la infección por dengue, desarrollo de hemorragias en modelo de ratón,
expresión de citoquinas proinflamatorias y replicación viral en varios cultivos de células tanto humanas como de origen animal.
REFERENCIAS (EN ESTE ARTÍCULO)
Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. Nature. 2013;496(7446):504-7.
Laughlin CA, Morens DM, Cassetti MC, Costero-Saint Denis A, San Martin JL, Whitehead SS, et al. Dengue research opportunities in the Americas. JID. 2012;206(7):1121-7.
Guzman A, Isturiz RE. Update on the global spread of dengue. Int J Antimicrob Agents. 2010;36 Suppl 1:S40-2.
Sadon N, Delers A, Jarman RG, Klungthong C, Nisalak A, Gibbons RV, et al. A new quantitative RT-PCR method for sensitive detection of dengue virus in serum samples. J Virol Methods. 2008;153(1):1-6.
Mangold KA, Reynolds SL. A review of dengue fever: a resurging tropical disease. Pediatr Emerg Care. 2013;29(5):665-9.
Clyde K, Kyle JL, Harris E. Recent advances in deciphering viral and host determinants of dengue virus replication and pathogenesis. J Virol. 2006;80(23):11418-31.
Noisakran S, Onlamoon N, Songprakhon P, Hsiao HM, Chokephaibulkit K, Perng GC. Cells in dengue virus infection in vivo. Adv Virol. 2010:1-16.
Malavige GN, Fernando S, Fernando DJ, Seneviratne SL. Dengue viral infections. Postgrad Med J. 2004;80(948):588-601.
Guzman MG, Kouri G. Dengue diagnosis, advances and challenges. IJID. 2004;8(2):69-80.
Thai KT, Nishiura H, Hoang PL, Tran NT, Phan GT, Le HQ, et al. Age-specificity of clinical dengue during primary and secondary infections. PLoS Negl Trop Dis. 2011;5(6):e1180.
Nguyen TH NT, Lei HY, Lin YS, Le BL, Huang KJ, Lin CF, et al. Association between sex, nutritional status, severity of dengue hemorrhagic fever, and immune status in infants with dengue hemorrhagic fever. Am J Trop Med Hyg. 2005;72(4):370-4.
Anders KL, Nguyet NM, Chau NV, Hung NT, Thuy TT, Lien le B, et al. Epidemiological factors associated with dengue shock syndrome and mortality in hospitalized dengue patients in Ho Chi Minh City, Vietnam. Am J Trop Med Hyg. 2011;84(1):127-34.
Soundravally R, Hoti SL, Patil SA, Cleetus CC, Zachariah B, Kadhiravan T, et al. Association between proinflammatory cytokines and lipid peroxidation in patients with severe dengue disease around defervescence. IJID. 2014;18:68-72.
Halliwell B. Biochemistry of oxidative stress. Biochem Soc T. 2007;35(5):1147-50.
Giustarini D, Dalle-Donne I, Tsikas D, Rossi R. Oxidative stress and human diseases: origin, link, measurement, mechanisms, and biomarkers. Crit Rev Cl Lab Sci. 2009;46(5-6):241-81.
Heinrich TA, da Silva RS, Miranda KM, Switzer CH, Wink DA, Fukuto JM. Biological nitric oxide signalling: chemistry and terminology. Br J Pharmacol. 2013;169(7):1417-29.
Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Oxidative stress and stressactivated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev. 2002;23(5):599-622.
Dias AS, Porawski M, Alonso M, Marroni N, Collado PS, González-Gallego J. Quercetin decreases oxidative stress, NF-kappaB activation, and iNOS overexpression in liver of streptozotocin-induced diabetic rats. J Nutr. 2005;135(10):2299-304.
Orr WC, Sohal RS. Effects of Cu-Zn superoxide dismutase overexpression of life span and resistance to oxidative stress in transgenic Drosophila melanogaster. Arch Biochem Biophys. 1993;301(1):34-40.
Koch M. Can animal models help to understand human diseases? Commentary on Swerdlow et al., 'Animal models of deficient sensorimotor gating: what we know, what we think we know, and what we hope to know soon'. Behav Pharmacol. 2000;11(3-4):205-7.
Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA Statement. Open Med. 2009;3(3):e123-30.
Misra A, Mukerjee R, Chaturvedi UC. Production of nitrite by dengue virusinduced cytotoxic factor. Clin Exp Immunol. 1996;104(3):406-11.
Misra A, Mukerjee R, Chaturvedi UC. Release of reactive oxygen intermediates by dengue virus-induced macrophage cytotoxin. Int J Exp Pathol. 1996;77(5):237-42.
Mukerjee R MA, Chaturvedi UC. Dengue virus-induced cytotoxin releases nitrite by spleen cells. Int J Exp Pathol 1996;77(2):45-51.
Fagundes CT, Costa VV, Cisalpino D, Amaral FA, Souza PR, Souza RS, et al. IFN-gamma production depends on IL-12 and IL-18 combined action and mediates host resistance to dengue virus infection in a nitric oxide-dependent manner. PLoS Negl Trop Dis. 2011 Dec;5(12):e1449.
Costa VV FC, Valada˜o DF, Cisalpino D, Dias ACF, et al. A model of DENV-3 infection that recapitulates severe disease and highlights the importance of IFN-g host resistance to infection. PLoS Negl Trop Dis. 2012;6(5):e1663.
Yen YT, Chen CH, Lin YD, Shieh CC, Wu-Hsieh BA. Enhancement by tumor necrosis factor alpha of dengue virus-induced endothelial cell production of reactive nitrogen and oxygen species is key to hemorrhage development. J Virol. 2008;82(24):12312-24.
Wang J, Chen Y, Gao N, Wang Y, Tian Y, Wu J, et al. Inhibitory effect of glutathione on oxidative liver injury induced by dengue virus serotype 2 infections in mice. PloS One. 2013;8(1):e55407.
de Souza KP, Silva EG, de Oliveira Rocha ES, Figueiredo LB, de Almeida-Leite CM, Arantes RM, et al. Nitric oxide synthase expression correlates with death in an experimental mouse model of dengue with CNS involvement. Virol J. 2013;10:267.
Mukherjee R, Chaturvedi P, Chaturvedi UC. Identification and purification of a receptor on macrophages for the dengue virus-induced suppressor cytokine. Clin Exp Immunol.1993;91(2):257-65.
Khare M, Chaturvedi UC. Role of nitric oxide in transmission of dengue virus specific suppressor signal. Indian J Exp Biol. 1997;35(8):855-60.
Marianneau P SA, Royer C, Drouet MT, Jaeck D, Kirn A, Deubel V. Infection of primary cultures of human Kupffer cells by Dengue virus: no viral progeny synthesis, but cytokine production is evident. J Virol. 1999;73(6):5201-6.
Jan JT, Chen BH, Ma SH, Liu CI, Tsai HP, Wu HC, et al. Potential dengue virustriggered apoptotic pathway in human neuroblastoma cells: arachidonic acid, superoxide anion, and NF-kappaB are sequentially involved. J Virol. 2000;74(18):8680-91.
Neves-Souza PC, Azeredo EL, Zagne SM, Valls-de-Souza R, Reis SR, Cerqueira DI, et al. Inducible nitric oxide synthase (iNOS) expression in monocytes during acute Dengue Fever in patients and during in vitro infection. BMC Infect Dis. 2005;5:64.
Chareonsirisuthigul T, Kalayanarooj S, Ubol S. Dengue virus (DENV) antibodydependent enhancement of infection upregulates the production of anti-inflammatory cytokines, but suppresses anti-DENV free radical and pro-inflammatory cytokine production, in THP-1 cells. J Gen Virol. 2007;88(Pt 2):365-75.
Tian Y, Jiang W, Gao N, Zhang J, Chen W, Fan D, et al. Inhibitory effects of glutathione on dengue virus production. Biochem Biophys Res Commun. 2010;397(3):420-4.
Lin YL, Liu CC, Chuang JI, Lei HY, Yeh TM, Lin YS, et al. Involvement of oxidative stress, NF-IL-6, and RANTES expression in dengue-2-virus-infected human liver cells. Virology. 2000;276(1):114-26.
Levy A, Valero N, Espina LM, Anez G, Arias J, Mosquera J. Increment of interleukin 6, tumour necrosis factor alpha, nitric oxide, C-reactive protein and apoptosis in dengue. Trans Roy Soc Trop Med Hyg. 2010;104(1):16-23.
Al-Alimi AA, Ali SA, Al-Hassan FM, Idris FM, Teow SY, Mohd Yusoff N. Dengue virus type 2 (DENV2)-induced oxidative responses in monocytes from glucose-6- phosphate dehydrogenase (G6PD)-deficient and G6PD normal subjects. PLoS Negl Trop Dis. 2014 Mar;8(3):e2711.
García G, Pérez AB, Sierra B, Rodríguez R, Rosario D, Martínez R, et al. Niveles de óxido nítrico en monos Macacus irus inoculados con virus dengue. Rev Cubana Med Trop. 2008;60(1):37-9.
Pérez AB, García G, Sierra B, Álvarez M, Vázquez S, Cabrera MV, et al. Producción ex vivo de TNFα y óxido nítrico por células sanguíneas en presencia de virus dengue. Rev Cubana Med Trop. 2008;60(1):31-6.
Chuang YCY, Yeh TM. Macrophage migration inhibitory factor enhances dengue virus replication through autophagy formation and ROS generation. J Immunol. 2012;188:168.10.
Chen YC, Wang SY. Activation of terminally differentiated human monocytes/macrophages by dengue virus: productive infection, hierarchical production of innate cytokines and chemokines, and the synergistic effect of lipopolysaccharide. J Virol. 2002;76(19):9877-87.
Espina LM, Valero NJ, Hernández JM, Mosquera JA. Increased apoptosis and expression of tumor necrosis factor-alpha caused by infection of cultured human monocytes with dengue virus. Am J Trop Med Hyg. 2003;68(1):48-53.
Valero N, Mosquera J, Anez G, Levy A, Marcucci R, de Mon MA. Differential oxidative stress induced by dengue virus in monocytes from human neonates, adult and elderly individuals. PloS One. 2013;8(9):e73221.
Valero N, Espina LM, Anez G, Torres E, Mosquera JA. Short report: increased level of serum nitric oxide in patients with dengue. Am J Trop Med Hyg. 2002;66(6):762-4.
Charnsilpa W, Takhampunya R, Endy TP, Mammen MP Jr., Libraty DH, Ubol S. Nitric oxide radical suppresses replication of wild-type dengue 2 viruses in vitro. J Med Virol. 2005;77(1):89-95.
Takhampunya R, Padmanabhan R, Ubol S. Antiviral action of nitric oxide on dengue virus type 2 replication. J Gen Virol. 2006;87(10):3003-11.
Ubol S CT, Kasisith J, Klungthong C. Clinical isolates of dengue virus with distinctive susceptibility to nitric oxide radical induce differential gene responses in THP-1 cells. Virology. 2008;376(2):290-6.
Lin CF, Lei HY, Shiau AL, Liu HS, Yeh TM, Chen SH, et al. Endothelial cell apoptosis induced by antibodies against dengue virus nonstructural protein 1 via production of nitric oxide. J Immunol. 2002;169(2):657-64.
Chen CL, Lin CF, Wan SW, Wei LS, Chen MC, Yeh TM, et al. Anti–Dengue virus nonstructural protein 1 antibodies cause NO-mediated endothelial cell apoptosis via ceramide-regulated glycogen synthase kinase-3b and NF-kB activation. J Immunol. 2013;191(4):1744-52.
Immenschuh S, Rahayu P, Bayat B, Saragih H, Rachman A, Santoso S. Antibodies against dengue virus nonstructural protein-1 induce heme oxygenase-1 via a redox-dependent pathway in human endothelial cells. Free Radic Biol Med. 2013;54:85-92.
Yen YT, Wu-Hsieh BA. Dengue viral component triggering reactive nitrogen and oxygen species production leads to endothelial cell apoptosis. J Immunol. 2009;182(Suppl), 45.33.
Olagnier D, Peri S, Steel C, van Montfoort N, Chiang C, Beljanski V, et al. Cellular oxidative stress response controls the antiviral and apoptotic programs in dengue virus-infected dendritic cells. PLoS Pathog. 2014;10(12):e1004566.