2015, Número 2
<< Anterior Siguiente >>
Rev Cubana Med Trop 2015; 67 (2)
Caracterización bioquímica y biológica del veneno de la serpiente Neotropical Macagua (Bothrops Colombiensis) de la región de Barlovento, estado Miranda, Venezuela
Sánchez EE, Girón ME, Guerrero B, Uzcátegui NL, Rodríguez-Acosta A
Idioma: Español
Referencias bibliográficas: 44
Paginas: 213-230
Archivo PDF: 279.91 Kb.
RESUMEN
Introducción: el veneno de
B. colombiensis no es solamente un elemento tóxico; en su composición existen múltiples componentes, que tienen un gran potencial terapéutico, principalmente en el tratamiento de patologías de la trombosis y la coagulación.
Objetivos: estudiar una mezcla de venenos de
Bothrops colombiensis de una ubicacion geográfica de Venezuela, a fin de hacer un barrido de sus actividades hemostáticas, que permitirá posteriormente purificar y caracterizar moléculas con actividad antitrombótica y anticoagulantes, entre otras, con potencial terapéutico.
Métodos: el veneno a estudiar, es una mezcla de ellos obtenidos de serpientes provenientes de la Región de Barlovento, estado Miranda, Venezuela. Se caracterizó
bioquímicamente por cromatografias de exclusión molecular, cromatografía de fase reversa C18 y por electroforesis a través de SDS–PAGE; y biológicamente por
medio de actividades relacionadas con la hemostasia. Se analizaron los perfiles en relación a las actividades fibrinolítica, proteolítica sobre polvo azul y cadena β de insulina, procoagulante, hemorrágica y letal.
Resultados: la actividad hemorrágica, definida como la Dosis Hemorrágica Mínima fue de 8,7 mg/kg. La letalidad, definida como la Dosis Letal cincuenta fue 8,7 mg/kg. El veneno presentó actividad procoagulante y fibrinolítica. Las fracciones mostraron actividad fibrinolítica y proteolítica sobre polvo azul de ocultamiento y sobre la cadena β de insulina.
Conclusiones: las características biológicas de los componentes de este veneno le confieren un enorme potencial terapéutico, ya que contiene una alta actividad
fibrinolítica y anticoagulante. Estos compuestos una vez purificados y caracterizados podrían explorarse como coadyuvantes en procesos trombolíticos, dado que disuelven coágulos de fibrina y degradan fibrinógeno, evitando episodios de retrombosis.
REFERENCIAS (EN ESTE ARTÍCULO)
Kamiguti AS, Cardoso JL. Haemostatic changes caused by the venoms of South American snakes. Toxicon 1989;27:955-63.
Girón ME, Salazar AM, Aguilar I, Pérez JC, Sánchez EE, Arocha-Piñango CL, et al. Hemorrhagic coagulant and fibrino(geno)lytic activities of crude venom and fractions from mapanare (Bothrops colombiensis) snakes. Comp Biochem Physiol C Toxicol Pharmacol. 2008;147:113-21.
Girón ME, Guerrero B, Salazar AM, Sánchez EE, Alvarez M, Rodríguez-Acosta A. Functional characterization of fibrinolytic metalloproteinases (colombienases) isolated from Bothrops colombiensis venom. Toxicon 2013;74:116-26.
Rengifo C, Rodríguez-Acosta A. Serpientes Veneno y Tratamiento Médico en Venezuela. Universidad Central de Venezuela, Caracas: Fondo Editorial de la Facultad de Medicina;2004.
Markland FS. Snake venoms and the hemostatic system. Toxicon 1998;36: 1749-800.
Jorge MT, Ribeiro LA. Envenoming by the South American pit viper Bothrops neuwiedi Wagler. Ann Trop Med Parasitol. 2000;94:731-34.
Rodríguez-Acosta A, Uzcátegui W, Azuaje R, Aguilar I, Girón ME. A clinical and epidemiological analysis of accidental bites by snakes of the genus Bothrops in Venezuela. Rev Cubana Med Trop. 2000;52:90-4.
Loria GD, Rucavado A, Kamiguti AS, Theakston RD, Fox JW, Alape A, Gutiérrez JM. Characterization of 'basparin A' a prothrombin-activating metalloproteinase from the venom of the snake Bothrops asper that inhibits platelet aggregation and induces defibrination and thrombosis. Arch Biochem Biophys. 2003;418:13-24.
Kamiguti AS, Hay CR, Theakston RD, Zuzel M. Insights into the mechanism of haemorrhage caused by snake venom Metalloproteinases. Toxicon 1996;34:627-42.
Bjarnason JB, Fox JW. Hemorrhagic metalloproteinases from snake venoms. Pharmacol Ther. 1994;62:325-72.
NIH. Principles of Laboratory Animal Care. National Institute of Health of United States, Maryland. 1985.
Spearman-Kärber F. Alternative Methods of Analysis for Quantal Responses. In: Statistical Method in Biological Assay Finney DJ Charles Griffin & Co Ltd. Londres. 1978.
Laemmli U. Cleavage of structural proteins during the assembly of the head of bacteriophage T-4. Nature 1970;227:608-9.
Omori-Satoh T, Sadahiro S, Ohsaka A, Murata R. Purification and characterization of an antihemorrhagic factor in the serum of Trimeresurus flavoviridis a crotalid . Biochim Biophys Acta. 1972;285:414-26.
Bajwa SS, Markland FS, Russel FE. Fibrinolytic enzyme(s) in western diamondback rattlesnake (Crotalus atrox) venom. Toxicon 1980;18:185-90.
Rinderknecht H, Geokas MC, Silverman P, Haverback BJ. A new ultrasensitive method for the determination of proteolytic activity. Clin Chim Acta. 1968;21:197-03.
Huang S, Perez JC. Comparative study on hemorrhagic and proteolytic activities of snake venoms. Toxicon 1980;18:421-26.
Austen D, Rhymes I. A Laboratory Manual of blood coagulation. Oxford, London: Osney Mead, Blackwell Scientific Publications;1975.
Swenson S, Markland FS jr . Snake venom fibrin(ogen)olytic enzymes. Toxicon 2005;45:1021-39.
Jorge MT, Ribeiro LA. The epidemiology and clinical picture of an accidental bite by the South American rattlesnake (Crotalus durissus). Rev Inst Med Trop Sao Paulo. 1992;34:347-54.
Jorge da Silva N Jr, Aird SD. Prey specificity, comparative lethality and compositional differences of coral snake venoms. Comp Biochem Physiol C Toxicol Pharmacol. 2001;128:425-56.
Calvete JJ, Borges A, Segura A, Flores-Díaz M, Alape-Girón A, Gutiérrez JM, et al. Snake venomics and antivenomics of Bothrops colombiensis a medically important pitviper of the Bothrops atrox-asper complex endemic to Venezuela: Contributing to its taxonomy and snakebite management . J Proteomics 2009;72: 227-40.
Rael ED, Lieb CS, Maddux N, Varela-Ramirez A, Perez J. Hemorrhagic and Mojave toxins in the venoms of the offspring of two Mojave rattlesnakes (Crotalus scutulatus scutulatus). Comp Biochem Physiol B. 1993;106:595-600.
Salazar AM, Rodríguez-Acosta A, Girón ME, Aguilar I, Guerrero B. A comparative analysis of the clotting and fibrinolytic activities of the mapanare (Bothrops atrox) snake venom from different geographical areas in Venezuela. Thromb Res. 2007;120:95-04.
Sugiki M, Maruyama M, Yoshida E, Mihara H, Kamiguti AS, Theakston DG. Enhancement of plasma fibrinolysis in vitro by jararhagin the main haemorrhagic metalloproteinase in Bothrops jararaca venom. Toxicon 1995;33:1605-617.
Hoffmann H, Bon C. Blood coagulation induced by the venom of Bothrops atrox, identification purification and properties of two factor X activators. Biochemistry 1987;26:780-87.
Zingali RB, Jandrot-Perrus M, Guillin M, Bonn C. Bothrojaracin a new thrombin inhibitor isolated from Bothrops jararaca venom: characterization and mechanism of thrombin inhibition. Biochemistry 1993;32:10794-802.
Sánchez EF, Santos CI, Magalhaes A, Diniz CR, Figueiredo S, Gilroy J, et al. Isolation of a proteinase with plasminogen-activating activity from Lachesis muta muta (bushmaster) snake venom. Arch Biochem Biophys. 2000;378:131-41.
Bello CA, Hermogenes, AL, Magalhaes A, Veiga SS, Gremski LH, Richardson M, Sánchez EF. Isolation and biochemical characterization of a fibrinolytic proteinase from Bothrops leucurus (white-tailed jararaca) snake venom. Biochimie 2006;88:189-200.
Kini RM. Anticoagulant proteins from snake venoms: structure function and mechanism. Biochem J. 2006;397:377-87.
Hermógenes AL, Richardson M, Magalhaes A, Yarleque A, Rodríguez E, Sánchez EF. Interaction of a plasminogen activator proteinase LV-PA with human alpha2- macroglobulin. Toxicon 2006;47:490-94.
Sánchez EF, Swenson S. Proteases from South American snake venoms affecting fibrinolysis. Curr Pharmac Analysis. 2007;3:147-57.
Jiménez N, Escalante T, Gutiérrez JM, Rucavado A. Skin pathology induced by snake venom metalloproteinase: acute damage revascularization and reepithelization in a mouse ear model. Invest Dermatol. 2008;128:2421-428.
Zingali RB, Ferreira MS, Assafim M, Frattani FS, Monteiro RQ. Bothrojaracin, a Bothrops jararaca snake venom-derived (pro)thrombin inhibitor, as an antithrombotic molecule. Pathophysiol Haemost Thromb. 2005;34:160-63.
Moura-da-Silva AM, Baldo C. Jararhagin, a hemorrhagic snake venom metalloproteinase from Bothrops jararaca. Toxicon 2012;60:280-89.
Yukelson LYa, L'vov VM, Shkinev AV, Sultanalieva N. The kallikrein, kininase and related peptides activities in central Asian snake venoms. Agents Actions Suppl. 1992;38:430-40.
Sánchez EE, Rodriguez-Acosta A, Palomar R, Lucena SE, Bashir S, Soto JG, et al. Colombistatin: a disintegrin isolated from the venom of the South American snake (Bothrops colombiensis) that effectively inhibits platelet aggregation and SKMel- 28 cell adhesion . Arch Toxicol. 2009;83:271-79.
Ogawa T, Oda N, Nakashima K, Sasaki H, Hattori M, Sakaki Y, et al. Unusually high conservation of untranslated sequences in cDNAs for Trimeresurus flavoviridis phospholipase A2 isozymes. Proc Natl Acad Sci USA. 1992;89:8557-561.
Takasaki C, Suzuki J, Tamiya N. Purification and properties of several phospholipases A2 from the venom of Australian king brown snake (Pseudechis australis). Toxicon 1990;28:319-27.
Braganca BM, Sambray YM. Multiple forms of cobra venom phospholipase A. Nature 1967;216:1210-1.
McCleary RJ, Kini RM.Non-enzymatic proteins from snake venoms: a gold mine of pharmacological tools and drug leads. Toxicon. 2013 Feb;62:56-74
Mclane MA, Sanchez EE, Wong A,Paquette-Straub C, Perez JC. Disintegrins. Curr Drug Targets Cardiovasc Haematol Disord. 2004;4:327-55.
Aguilar I, Guerrero B, Salazar AM, Girón ME, Pérez JC, Sánchez EE, et al. Individual venom variability in the South American rattlesnake Crotalus durissus cumanensis. Toxicon 2007;50:214-24.
Sasa M. Diet and snake venom evolution: can local selection alone explain intraspecific venom variation? Toxicon 1999;37:249-52.