2005, Número 2
<< Anterior Siguiente >>
Rev Invest Clin 2005; 57 (2)
Función biológica del complejo principal de histocompatibilidad
López-Martínez A, Chávez-Muñoz C, Granados J
Idioma: Español
Referencias bibliográficas: 42
Paginas: 132-141
Archivo PDF: 95.97 Kb.
FRAGMENTO
INTRODUCCIÓN
El complejo principal de histocompatibilidad (MHC) está conformado por un conjunto de genes cuyos productos son expresados en la superficie de las células del sistema inmune. La principal característica de estos genes es su elevado polimorfismo; esto es, la presencia de una gran cantidad de variaciones en cada uno de los individuos. La importancia fisiológica del MHC fue establecida casi dos décadas posteriores a su descubrimiento en 1940, cuando se observó su papel en la respuesta a inmunizaciones. Posteriormente se han descubierto múltiples funciones biológicas, entre las más importantes está la presentación antigénica, su papel en la inmunobiología del trasplante, la formación del repertorio de células T y la autoinmunidad.
REFERENCIAS (EN ESTE ARTÍCULO)
Klein J, Sato A. Birth of the major histocompatibility complex. Scand J Immunol 1998; 47: 199.
Beck S, Hanson I, Kelly A, Khurshid F, Radley E, Trowsdale J. DNA sequence analysis of 66 KB of the human MHC class II region encoding a cluster of genes for antigen processing. J Mol Biol 1992; 228: 433.
Hunt JS, Orr HT. HLA and maternal-fetal recognition. FASEB J 1992; 6: 2344.
Kendall E, Sargent CA, Campbell RD. MHC contains a new cluster of genes between the HLA-D and complement C4 loci. Nucleic Acids Res 1990; 18: 7251.
Brown J, Jardetzky T, Gorga J, et al. Three-dimensional structure of the human class I MHC antigen HLA-DR1. Nature 1993; 364: 33.
Madden D. The three-dimensional structure of peptide-MHC complexes. Annu Rev Immunol 1995; 13: 587.
Strominger JL, Wiley DC. The class II proteins of the human major histocompatibility complex. JAMA 1995; 274: 1074.
Engelhard VA. Structure of peptides associated with class I and Class II MHC molecules. Annu Rev Immunol 1994; 12: 181.
Jackson MR, Peterson PA. Assembly and intracellular transport of MHC class I molecules. Annu Rev Cell Biol 1993; 9: 207.
Cresswell P. Assembly, transport, and function of MCH class II molecules. Ann Rev Immunol 1994; 12: 259.
Sebzda E, Mariathasan S, Ohtek TI, Jones R, Bachmann MF, Ohashi PS. Selection of the T cell repertoire. Annu Rev Immunol 1996; 17: 829.
Kruisbeck AM. Regulation of T cell development by the thymic microenvironment. Semin Immunol 1999; 11: 1.
Murphy B, Sayegh MH. Why do we reject a graft? Mechanisms of recognition of transplantation antigens. Transpl Rev 1996; 10: 150.
Briscoe DM, Sayegh MH. A rendezvous before rejection: where do T cells meet transplant antigens? Nat Med 2002; 8: 220.
Heath W, Hurd N, Carbone F, et al. Peptides dependent recognition of H-2K by alloreactive cytotoxic T lymphocytes. Nature 1989; 341: 749.
Clayberger C. Immunosupressive peptides corresponding to MHC class I sequences. Curr Opin Immunol 1995; 7: 644.
Murphy B, Akalin E, Watschiger B, et al. Inhibition of the alloimmune response with synthetic non-polymorphic class II MHC peptides. Transplant Proc 1995; 27: 409.
Remuzzi G, Perico N, Carpenter CB, et al. The thymic way to transplantation tolerance. J Am Soc Nephrol 1995; 5: 1639.
Azuma H, Heemann UW, Tullius SG, Tilney NL. Cytokines and adhesion molecules in chronic rejection. Clin Transplant 1994; 8: 168.
Mossmann TR. Properties and functions of interleukin-10. Adv Immunol 1994; 56: 1.
Heeman UW, Tullius SG. Azuma H, Kupiec-Weglinski J, Tilney NL. Adhesion molecules and transplantation. Ann Surg 1994; 219: 4.
Rositer H, Alon R, Kupper TS. Selectins, T cell rolling and inflammation. Mol Med Today 1997; 3: 214.
Coulin RB. Cellular and molecular mechanism of allograft rejection. Annu Rev Med 1990; 41: 361.
Newton-Nash DK. The molecular basis of allorecognition assessment of the involvement of peptide. Hum Immunol 1994; 41: 105.
Moolenaar W, Brujin JA, Schrama E, et al. T-cell receptors and ICAM-1 expression in renal allografts during rejection. Transplant Int 1991; 4: 140.
Briscoe DM, Schoen FJ, Rice GE, et al. Induced expression of endothelial-leukocyte adhesion molecules in human cardiac allografts. Transplant 1991; 51: 537.
Adams DH, Mainolfi E, Elias, et al. Detection of circulating intercellular adhesion molecule-1 after liver transplantation- evidence of local release within the liver during graft rejection. Transplant 1993; 55: 83.
Damle NK, Klussman K, Leytze G, et al. Co-stimulation via VCAM-1 induces in T cells increased responsiveness to the CD28 counter-receptor B7. Cell Immunol 1993; 148: 144.
Dallman MJ. The cytokine network and regulation of the immune response to organ transplants. Transplant Rev 1992; 6: 209.
Lowry RP, Blais D. Tumor necrosis factor-alpha in rejecting rat cardiac allografts. Transplant Proc 1988; 20: 245.
Parneau J, Priestly C, Fabre J, et al. Effects of gamma interferon and interleukin 2, and of gamma interferon antibodies in the rat immune response against allografts. Transplant Proc 1989; 21: 999.
Dallman MJ, Shiho O, Page TH, et al. Peripheral tolerance to alloantigen results from altered regulation of the interleukin 2 pathway. J Exp Med 1991; 173: 79.
Hernandez-Fuentes MP, Lechler RI. Chronic graft loss. Immunological and non-immunological factors. Contrib Nephrol 2005; 146: 54.
Opelz G, for the Collaborative Transplant Study. Strength of HLA-A, HLA-B, and HLA-DR mismatches in relation to short- and long-term kidney graft survival. Transplant Int 1991; 5(Suppl. 1); S621.
Fishman JA. BK-virus nephropaty-polyomavirus adding insult to injury. N Engl J Med 2002; 347: 527.
Lemström K, Koskinen P, Krogerus L, Daemen M, Bruggeman C, Häyry P. Cytomegalovirus antigen expression, endothelial cell proliferation, and intimal thickening in rat cardiac allografts; after cytomegalovirus infection. Circulation 1995; 92: 2594.
O’Grady JG, Alexander GJ, Sutherland S, et al. Cytomegalovirus infection and donor/recipient HLA antigens: interdependent co-factors in pathogenesis of vanishing bile-duct syndrome after liver transplantation. Lancet ii 1988; 302-4.
Ciubotariu R, Liu Z, Colovai AI, et al. Persistent allopeptide reactivity and epitope spreading in chronic rejection of organ allografts. J Clin Invest 1998; 101: 398.
Autieri MV. Allograft induced proliferation of vascular smooth muscle cells: potential targets for treating transplant vasculopathy. Curr Vasc Pharmacol 2003; 1: 1.
Nocera A, Tagliamacco A, De Palma R, et al. Cytokine mRNA expression in chronically rejected human renal allografts. Clin Transplant 2004; 18: 564.
Letterio JJ, Roberts AB. Regulation of immune responses by TGF-beta. Annu Rev Immunol 1998; 16: 137.
Lindner V, Lappi D, Baird A, Majack RA, Reidy MA. Role of basic fibroblast growth factor in vascular lesion formation. Circ Res 1991; 68: 106.