2014, Número 1
<< Anterior Siguiente >>
Rev Mex Ing Biomed 2014; 35 (1)
Desarrollo de un Exoesqueleto para Rehabilitación de Tobillo y Rodilla
López R, Torres J, Salazar S, Lózano R
Idioma: Español
Referencias bibliográficas: 31
Paginas: 13-28
Archivo PDF: 698.62 Kb.
RESUMEN
Los exoesqueletos son sistemas electro-mecánicos acoplados a las
extremidades del cuerpo humano enfocados al incremento de su fuerza,
velocidad y rendimiento principalmente. Las principales aplicaciones
son en la milicia, en la industria y en la medicina, en particular se
pueden utilizar para la rehabilitación de las extremidades. En este
artículo se presenta un exoesqueleto de dos grados de libertad para
realizar ejercicios de rehabilitación en tobillo y rodilla. El diseño y
construcción del exoesqueleto está basado en la instrumentación y
control de una ortesis del miembro inferior derecho. El Exoesqueleto
utiliza sensores que estiman la fuerza producida por el humano y se
encuentran acoplados a los actuadores SEA (Series Elastic Actuator)
que se utilizan para amplificar la fuerza humana. La amplificación de la
fuerza puede aumentarse o disminuirse según se necesite, permitiendo
al usuario una mejora evolutiva hasta llegar a la rehabilitación. Además
mediante sensores se estima la posición y velocidad angular de las
articulaciones, que se utilizan para controlar el movimiento de la pierna.
En resumen, el objetivo perseguido es de contar con un diseño propio
de bajo costo de un exoesqueleto que ofrezca una disminución en el
esfuerzo requerido por el usuario para mantenerse en pie y hacer algunos
ejercicios de rehabilitación estáticos independientes como flexionar y
extender la pierna derecha o izquierda.
REFERENCIAS (EN ESTE ARTÍCULO)
[1] S. Hoppenfeld and V. L. Murthy, “Fracturas tratamiento y rehabilitación,” MARBAN, First Edition, 2001.
[2] C. Schmitt, P. Métrailler, and A. Al- Khodairy, “The motion maker: a rehabilitation system combining an orthosis with closed-loop electrical muscle stimulation,” in Proceedings of the 8th Vienna International Workshop on Functional Electrical Stimulation, pp. 117–120, 2004.
[3] M. Bouri, B. L. Gall, and R. Clavel, “A new concept of parallel robot for rehabilitation and fitness: the lambda,” in Proceedings of the IEEE International Conference on Robotics and Biomimetics, (ROBIO ’09), pp. 2503–2508, 2009.
[4] K. Homma, O. Fukuda, J. Sugawara, Y. Nagata, and M. Usuba, “A wire-driven leg rehabilitation system: development of a 4- dof experimental system,” in Proceedings of the International Conference on Advanced Intelligent Mechatronics, (IEEE/ASME ’03), vol. 2, pp. 908-913, 2003.
[5] P. Sui, L. Yao, Z. Lin, H. Yan, and J. S. Dai, “Analysis and synthesis of ankle motion and rehabilitation robots,” in Proceedings of the IEEE International Conference on Robotics and Biomimetics, (ROBIO ’09), pp. 2533– 2538, 2009.
[6] J. Nikitczuk, B. Weinberg, P. K. Canavan, and C. Mavroidis, “Active knee rehabilitation orthotic device with variable damping characteristics implemented via an electrorheological fluid,” IEEE/ASME Transactions on Mechatronics, vol. 15 no. 6, Article ID 5353649, pp. 952-960, 2010.
[7] T. Kikuchi, K. Oda, and J. Furusho, “Leg-robot for demonstration of spastic movements of brain-injured patients with compact magnetorheological fluid clutch,” Advanced Robotics, vol. 24 no. 16, pp. 671- 686, 2010.
[8] J. Yoon, B. Novandy, C. H. Yoon, and K. J. Park, “A 6- dof gait rehabilitation robot with upper and lower limb connections that allows walking velocity updates on various terrains,” IEEE/ASME Transactions on Mechatronics, vol. 15 no. 2, pp. 201-215, 2010.
[9] D. P. Ferris, G. S. Sawicki, and A. R. Domingo, “Powered lower limb orthoses for gait rehabilitation,” Topics in Spinal Cord Injury Rehabilitation, vol. 11 no. 2, pp. 34- 49, 2005.
[10] A. Roy, H. I. Krebs, and S. L. Patterson, “Measurement of human ankle stiffness using the anklebot,” in Proceedings of the 10th IEEE International Conference on Rehabilitation Robotics, (ICORR ’07), pp. 356–363, 2007.
[11] H. I. Krebs, L. Dipietro, and S. Levy- Tzedek, “A paradigm shift for rehabilitation robotics,” IEEE Engineering in Medicine and Biology Magazine, vol. 27 no. 4, pp. 61- 70, 2008.
[12] I. Khanna, A. Roy, M. M. Rodgers, H. I. Krebs, R. M. MacKo, and L. W. Forrester, “Effects of unilateral robotic limb loading on gait characteristics in subjects with chronic stroke,” Journal of NeuroEngineering and Rehabilitation, vol. 7, no. 1, article 23, 2010.
[13] G. S. Sawicki and D. P. Ferris, “A pneumatically powered kneeanklefoot orthosis (kafo) with myoelectric activation and inhibition,” Journal of NeuroEngineering and Rehabilitation, vol. 6, p. 23, 2009.
[14] K. Bharadwaj and T. G. Sugar, “Kinematics of a robotic gait trainer for stroke rehabilitation,” in Proceedings of the IEEE International Conference on Robotics and Automation, (ICRA ’06), pp. 3492–3497, 2006.
[15] G. A. Pratt and M. M. Williamson, “Series elastic actuator,” Intelligent Robots and Systems 95. Human Robot Interaction and Cooperative Robots, Proceedings., vol. 1, pp. 399- 406, 1995.
[16] J. Pratt, B. Krupp, and C. Morse, “Series elastic actuators for high fidelity force control,” Industrial Robot: An International Journal, vol. 29, no. 3, pp. 234–241, 2002.
[17] E. Rouse, L. Mooney, E. Martinez- Villalpando, and H. Herr, “Clutchable series-elastic actuator: Design of a robotic knee prothesis for minimum energy consumption,” Rehabilitation Robotics (ICORR), IEEE international Conference on, vol. 1-6, 2013.
[18] N. C. Karavas, N. G. Tsagarakis, and D. G. Caldwell, “Design, modeling and control of a series elastic actuator for an assistive knee exoskeleton,” Biomedical Robotics and Biomechatronics (BioRob) IEEE international confernece on, pp. 1813–1819, 2012.
[19] R. Daniel, “Series elastic actuator control of a powered exoskeleton,” Engineering in Medicine and Biology Society, EMBC, IEEE annual international conference, pp. 3515– 3518, 2011.
[20] K. Kyoungchul, J. Bae, and M. Tomizuka, “A compact rotary series elastic actuator for human assistive systems,” Mechatronics, IEEE/ASME Transactions, vol. 17 no. 2, pp. 288– 297, 2012.
[21] D. W. Robinson, J. E. Pratt, D. J. Paluska, and G. A. Pratt, “Series elastic actuator development for a biomimetic walking robot,” IEEE ASME International Conference on Advanced Intelligent Mechatronics, pp. 561– 568, 1999.
[22] B. Balachandran and E. B. Magrab, “Vibraciones,” Cengage Learning Editores, pp. 22–25, 2008.
[23] H. K. Khalil, “Nonlinear systems.” Prentice Hall, vol. Third Edition pp. 433, 2002.
[24] N. Hogan, “Adaptive control of mechanical impedance by coactivation of antagonist muscles,” IEEE Trans. Automat. Contr., vol. 29, pp. 681-690, 1984.
[25] N. Hogan., “The mechanics of multi-joint posture and movement,” Biological Cybern, vol. 52, pp. 315-331, 1985.
[26] T. R. Nichols and J. C. Houk, “The improvement in linearity and the regulation of stiffness that results from the actions of the stretch reflex,” Journal of Neurophysiology, vol. 39, pp. 119-142, 1976.
[27] A. A. Nikooyan and A. A. Zadpoor, “Mass spring damper modeling of the human body to study running and hopping: an overview,” Journal of Mechanical Engineers., vol. 225 no. 12, pp. 1121-1135, 2011.
[28] Bullimore. and J. F. J. T. Burn, “Ability of the planar spring mass model to predict mechanical parameters in running humans,” Journal of theoretical biology, vol. 248 no. 4, pp. 686 - 695, 2007.
[29] T. R. Derrick, G. E. Caldwell, and J. Hamill, “Original research modeling the stiffness characteristics of the human body while running with various stride lengths.” Journal of Applied Biomechanics, vol. 16 no. 1, february, 2000.
[30] E. Slotine and W. Li, “Applied nonlinear control,” Prentice Hall, 1991.
[31] J. Wiley, “Anthropometric data,” Spring, 2012.