2015, Número 1
<< Anterior Siguiente >>
Rev Mex Ing Biomed 2015; 36 (1)
Mejora de la Señal de Flujo Sanguíneo en Implantes Coronarios Mediante la Detección de Distorsiones Eventuales
Torres GD, Carbajal FCS
Idioma: Español
Referencias bibliográficas: 28
Paginas: 33-53
Archivo PDF: 1130.37 Kb.
RESUMEN
Se presenta un método para el procesamiento de señales en aplicaciones médicas que utilizan técnicas de
diagnóstico basadas en ultrasonido Doppler. El método está orientado a obtener una mejor representación de la
señal de flujo sanguíneo, a partir de la identificación y exclusión de los ciclos, de dicha señal, que se encuentran
afectados por distorsiones eventuales. Esto permite, de manera robusta y confiable, estimar parámetros y extraer
información clínicamente útil con el objetivo de formular diagnósticos precisos sobre la funcionalidad del objeto
examinado. Se muestran los resultados de la aplicación del método sobre señales reales de flujo sanguíneo obtenidas
durante procedimientos de revascularización coronaria y se demuestra que la estimación de los índices clínicos de
interés mejora considerablemente cuando los ciclos detectados como afectados por ruido eventual son excluidos del
análisis.
REFERENCIAS (EN ESTE ARTÍCULO)
H.D. Evans, W.N. Mcdicken, Doppler ultrasound: physic, instrumentation and signal processing. John Wiley & Sons Ltd. (England), 2000.
E. Stranden, “Functional and anatomical test to evaluate graft patency after vascular surgery procedures: principles and clinical applications,” En D’Ancona et al., Intraoperative graft patency verification in cardiac and vascular surgery, Futura Publishing Company, Inc. (New York), pp. 27-63, 2001.
M.J. Girault, et al., “Microemboli detection: An ultrasound Doppler signal-processing viewpoint,” IEEE Transactions on Biomedical Engineering, vol. 47, no. 11, pp. 1431- 1439.
M.P. Spencer, “Detection of cerebral arterial emboli” En D.W. Newell, R. Aaslid, Transcranial Doppler, Raven Press (New York), pp. 215-230, 1992.
A.M. Mark, et al., “Method and apparatus for ultrasonically detecting, counting and/or characterizing emboli,” United States Patent, Patent Number: 5,348,015. 1994-09-20.
A.M. Mark, et al, “Apparatus and method for ultrasonically detecting emboli,” European Patent, Patent Number: EP 0 660 686 B1. 1997-11- 19.
H.S. George, “Apparatus for and a method of distinguishing ultrasound signals returned from bubbles and particles moving in a fluid from signals due to ultrasound transducer motion,” United States Patent, Patent Number: 5,103,827. 1992-04-14.
Ronald EH, et al. “Method and apparatus for the non-invasive detection and classification of emboli,” United States Patent, Patent Number: 5,441,051. 1995-08-15.
G. Serbes y N. Aydin, “Denoising embolic Doppler signals using modified complex discrete wavelet transform,” IEEE 19th Signal Processing and Communications Applications Conference, pp. 566-569, 2011. DOI: 10.1109/SIU.2011.5929713.
G. Serbes y N. Aydin, “Symmetrical modified dual tree complex wavelet transform for processing quadrature Doppler ultrasound signals,” 33rd Annual International Conference of the IEEE EMBS, Boston, Massachusetts USA, pp. 4816-4819, August 30 - September 3, 2011. DOI: 10.1109/IEMBS.2011.6091193.
N. Aydin, S. Padayachee y H. Markus, “The use of wavelet transform to describe embolic signals,” Ultrasound Med Biol., vol. 25, no. 6, pp. 953-958, 1999.
G. Serbes y N. Aydin, “Denoising embolic Doppler ultrasound signals using dual tree complex discrete wavelet transform,” 32nd Annual International Conference of the IEEE EMBS, pp. 1840-1843, Buenos Aires, Argentina, August 31 - September 4, 2010. DOI: 10.1109/IEMBS.2010.5626445
N. HS, et al., “Embolic Doppler ultrasound signal detection using continuous wavelet transform to detect multiple vascular emboli,” Journal of Neuroimaging, vol. 18, no. 4, pp. 388- 395, 2007.
G. Serbes, et al., “Embolic Doppler ultrasound signal detection using modified dual tree complex wavelet transform,” Proceedings of the IEEEEMBS International Conference on Biomedical and Health Informatics, Hong Kong and Shenzhen, China, 2012, pp. 945-947. DOI: 10.1109/BHI.2012.6211744.
J.M. Girault, et al., “Synchronous detection of emboli by wavelet packet decomposition,” IEEE ICASSP, vol. 1, pp. I-409-I-412, 2007. DOI: 10.1109/ICASSP.2007.366703.
M. Gençer, et al., “Embolic Doppler ultrasound signal detection via fractional Fourier transform,” 35th Annual International Conference of the IEEE EMBS Osaka, Japan, pp. 3050-3053, 2013. DOI: 10.1109/EMBC.2013.6610184.
D. Xu y Y. Wang, “An automated feature extraction and emboli detection system based on the PCA and fuzzy sets,” Computers in Biology and Medicine, vol. 37, no. 6, pp. 861-871, 2007.
L. Charoenchai, et al., “Processing time improvement for automatic embolic signal detection using fuzzy CMean,” 10th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTICON), pp. 1-5, 2013. DOI: 10.1109/ECTICon.2013.6559542.
K. Ferroudji, “Empirical mode decomposition based support vector machines for microemboli classification,” 8th International Workshop on Systems, Signal Processing and their Applications, IEEE, pp. 84-88, 2013. DOI: 10.1109/WoSSPA.2013.6602341.
W. Teng, et al., “Optimization of pulsed Doppler sample volume for emboli detection,” 5th International Conference on Bioinformatics and Biomedical Engineering, (iCBBE), pp. 1-4, 2011. DOI: 10.1109/icbbe.2011. 5780240.
K. Ferroudji, et al., “Feature selection based on RF signals and KNN rule, application to microemboli classification,” 7th International Workshop on Systems, Signal Processing and their Applications, IEEE, pp. 251-254, 2011. DOI: 10.1109/WOSSPA.2011.5931465.
L. Mo y R. Cobbold, “A unified approach to modeling the backscattered Doppler ultrasound from blood,” IEEE Transactions on Biomedical Engineering, vol. 39, no. 5, pp. 450- 461, 1992.
A. Hindi, C. Peterson y G. Barr, “Artifacts in diagnostic ultrasound,” Reports in Medical Imaging, vol. 6, pp. 29-48, 2013. DOI: http://dx.doi.org/10.2147/RMI.S33464.
V.S. Vaseghi, Advanced digital signal processing and noise reduction, John Wiley & Sons Ltd, (England), 2000.
D.H. Evans, “A pulse-foot-seeking algorithm for Doppler ultrasound waveforms,” Clinical Physics and Physiological Measurement, vol. 9, no. 3, 267-271, 1988.
P.R. Barbosa, F.J. Barbosa, C.A. Sa, E.C. Barbosa, J. Nadal, “Reduction of electromyographic noise in the signalaveraged electrocardiogram by spectral decomposition,” IEEE Transactions on Biomedical Engineering, vol. 50, no. 1, pp. 114-117, 2003.
E. Laciar y R. Jane, “An improved weighted signal averaging method for high-resolution ECG signals,” IEEE Computers in Cardiology, pp. 69-72, 2001. DOI: 10.1109/CIC.2001.977593.
http://www.physionet.org/physiobank/ database/