2015, Número 1
<< Anterior Siguiente >>
Rev Mex Ing Biomed 2015; 36 (1)
Efecto de implantes de polipirrol sintetizados por diferentes métodos sobre lesiones de médula espinal en ratas
Álvarez-Mejía L, Salgado-Ceballos H, Olayo R, Cruz GJ, Olayo MG, Díaz-Ruiz A, Ríos C, Mondragón-Lozano R, Morales-Guadarrama A, Sánchez-Torres S, Morales J
Idioma: Ingles.
Referencias bibliográficas: 52
Paginas: 7-21
Archivo PDF: 1015.64 Kb.
RESUMEN
En el presente trabajo se comparó el efecto de implantes poliméricos derivados del pirrol (polipirrol o PPy)
y del copolímero polipirrol/polietilenglicol (PPy/PEG), obtenidos por diferentes métodos de síntesis: químico,
electroquímico y polimerización por plasma con el propósito de determinar si el método de síntesis puede influir
sobre el efecto que producen al ser implantados después de una lesión traumática de la médula espinal de ratas.
Antes de realizar el implante, las características químicas y estructurales de los polímeros fueron analizadas por
espectroscopia de infrarrojo (IR). Se utilizó un modelo experimental de lesión traumática de médula espinal (LTME)
por sección completa en ratas. La LTME se realizó a nivel torácico 9 y el polímero fue implantado de inmediato en
la zona de lesión. La recuperación de la función motora se evaluó mediante la escala Basso, Beattie y Bresnahan
(BBB) una vez por semana durante 5 semanas. La evaluación histológica se realizó al término del seguimiento con
la tinción de hematoxilina/eosina. Los resultados muestran que los animales implantados con polímeros sintetizados
por plasma se integraron mejor al tejido nervioso, redujeron la respuesta inflamatoria y favorecieron una mayor
recuperación funcional en comparación con los animales implantados con materiales sintetizados por métodos químicos
o electroquímicos.
REFERENCIAS (EN ESTE ARTÍCULO)
C.A. Oyinbo, “Secondary injury mechanisms in traumatic spinal cord injury: a nugget of this multiply cascade,” Acta Neurobiol Exp, vol. 71, pp. 281-299, 2011.
W. Tetzlaff, E.B. Okon, S. Karimi- Abdolrezaee, C.E. Hill, J.S. Sparling, J.R. Plemel, W.T. Plunet, E.C. Tsai, D. Baptiste, L.J. Smithson, M.D. Kawaja, M.G. Fehlings, B.K. Kwon “A systematic review of cellular transplantation therapies for spinal cord injury,” J Neurotrauma., vol. 28, no. 8, pp. 1611-1682, 2011.
S. Venkatachalam, “Fetal neural tissue transplantation for spinal cord injury repair,” Chapter 23 in N. Bhattacharya, P. Stubblefield (eds.), Human Fetal Tissue Transplantation. Springer London, pp. 297-305, 2013.
H. Salgado-Ceballos, I. Grijalva, G. Guizar-Sahagun, A. L. Espitia, A. Martínez, A. Feria-Velasco, “Predegenerated peripheral nerve graft with and without methylprednisolone administration after traumatic spinal cord injury in adult rats,” Neurosci. Res. Comm., vol. 33, no. 2, pp. 77-85, 2003.
M.P. Côté, A.A. Amin, V.J. Tom, J.D. Houle “Peripheral nerve grafts support regeneration after spinal cord injury,” Neurotherapeutics, vol. 8, no. 2, pp. 294-303, 2011.
H. Kanno, Y. Pressman, A. Moody, R. Berg, E.M. Muir, J.H. Rogers, H. Ozawa, E. Itoi, D.D. Pearse, M.B. Bunge, “Combination of engineered Schwann cell grafts to secrete neurotrophin and chondroitinase promotes axonal regeneration and locomotion after spinal cord injury,” J. Neurosci., vol. 34, no. 5, pp. 1838- 1855, 2014.
Y.J. Rao, W.X. Zhu, Z.Q. Du, C.X. Jia, T.X. Du, Q.A. Zhao, X.Y. Cao, Y.J. Wang “Effectiveness of olfactory ensheathing cell transplantation for treatment of spinal cord injury,” Genet. Mol. Res., vol. 13, no. 2, pp. 4124- 4129, 2014.
Z.A, Sobani, S.A. Quadri, S.A. Enam, “Stem cells for spinal cord regeneration: Current status,” Surg Neurol Int., vol. 1, pp. 93, 2010.
H. Nakajima, K. Uchida, Rodriguez A. Guerrero, S. Watanabe, D. Sugita, N. Takeura, A. Yoshida, G. Long, K. Wright, E. Johnson, H. Baba, “Transplantation of mesenchymal stem cells Promotes the alternative pathway of macrophage activation and functional recovery after spinal cord injury,” J. Neurotrauma., vol. 29, no. 8, pp. 1614- 1625, 2012.
J. Ai, A. Kiasat-Dolatabadi, S. Ebrahimi-Barough, A. Ai, N. Lotfibakhshaiesh, A. Norouzi-Javidan, H. Saberi, B. Arjmand, HR. Aghayan, “Polymeric scaffolds in neural tissue engineering: A review,” Arch. Neuro Sci., vol. 1, no. 1, pp. 15-20, 2013.
V. Krishna, S. Konakondla, J. Nicholas, A. Varma, M. Kindy, X. Wen, “Biomaterial-based interventions for neuronal regeneration and functional recovery in rodent model of spinal cord injury: A systematic review,” J Spinal Cord Med., vol. 36, no. 3, pp. 174-190, 2013.
M. Wang, P. Zhai, X. Chen, D.J. Schreyer, X. Sun, F. Cui “Bioengineered scaffolds for spinal cord repair,” Tissue Eng. Part B Rev., vol. 17, no. 3, pp. 177-194, 2011.
L. Ghasemi-Mobarakeh, M.P. Prabhakaran, M. Morshed, M.H. Nasr- Esfahani, H. Baharvand, S. Kiani, S.S. Al-Deyab, S. Ramakrishna “Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering,” J. Tissue Eng Regen Med, vol. 5, no. 4, 17-35, 2011.
I.S. Chronakis, S. Grapenson, A. Jakob, “Conductive polypyrrole nanofibers via electrospinning: electrical and morphological properties,” Polymer, vol. 47, no. 5, pp. 1597-1603, 2006.
Q. Zhang, Y. Yan, S. Li, et al., “The synthesis and characterization of a novel biodegradable and electroactive polyphosphazene for nerve regeneration,” Mater. Sci. Eng. C, vol. 30, no. 1, pp. 160-166, 2010.
M.A. Chougule, S.G. Pawar, P.R. Godse, R.N. Mulik, S. Sen, V.B. Patil, “Synthesis and characterization of polypyrrole (PPy) thin films,” Soft Nanoscience Letters, vol. 1, no. 1, pp. 6-10, 2011.
J.C. Vidal, E. Garcia, J.R. Castillo “In situ preparation of a cholesterol biosensor: entrapment of cholesterol oxidase in an overoxidized polypyrrole film electrodeposited in a flow system: determination of total cholesterol in serum,” Analytica Chimica Acta, vol. 385, no. 1-3, pp. 213-222, 1999.
E. Lopez-Crapez, T. Livache, J. Marchand, J. Grenier “K-ras mutation detection by hybridization to a polypyrrole DNA chip,” Clin Chem., vol. 47, no. 2, pp. 186-194, 2001.
T.E. Campbell, A.J. Hodgson, G.G. Wallace “Incorporation of eythrocytes into polypyrrole to form the basis of a biosensor to screen for rhesus (D) blood groups and rhesus (D) antibodies,” Electroanalysis, vol. 11, no. 4, pp. 215- 222, 1999.
R.H.M. van de Leur, A. van der Waal, “Gas and vapour detection using polypyrrole,” Synthetic Metals, vol. 102, no. 1-3, pp. 1330-1331, 1999.
A.B. Sanghvi, K.P. Miller, A.M. Belcher, C.E. Schmidt, “Biomaterials fictionalization using a novel peptide that selectively binds to a conducting polymer,” Nat Mater, vol. 4, no. 6, pp. 496-502, 2005.
J.R. Reynolds, H. Ly, F. Selampinar, P.J. Kinlen, “Controlled drug and biomolecule release from electroactive host polymer systems,” Polymer Preprints, vol. 40, no. 1, pp. 307, 1999.
T.F. Otero, M.T. Cortés, “Artificial muscles with tactile sensitivity,” Adv. Mater., vol. 15, no. 3, 279-289, 2003.
X. Wang, X. Gu, C. Yuan, S. Chen, P. Zhang, T. Zhang, J. Yao, F. Chen, G. Chen, “Evaluation of biocompatibility of polypyrrole in vitro and in vivo,” J Biomed Mater Res A, vol. 68A, no. 3, pp. 411-422, 2004.
R.L. Williams, P.J. Doherty, “A preliminary assessment of poly(pyrrole) in nerve guide studies,” J. Mater Sci- Mater M., vol. 5, no. 6-7, pp. 429-433, 1994.
H. Castano, E.A. O’Rear, P.S. McFetridge, V.I. Sikavitsas “Polypyrrole thin films formed by admicellar polymerization support the osteogenic differentiation of mesenchymal stem cells,” Macromol Biosci, vol. 4, no. 8, pp. 785-794, 2004.
H.K. Song, B. Toste, K. Ahmann, D. Hoffman-Kim, G.T. Palmore, “Micropatterns of positive guidance cues anchored to polypyrrole dopedwith polyglutamic acid: a new platform for characterzing neurite extension in complex environments,” Biomaterials, vol. 27, no. 3, pp. 473-484, 2006.
D.D. Ateh, P. Vadgama, H.A. Navasaria, “Polypyrrole-based conducting polymers and interactions with biological tissues,” J. R. Soc. Interface, vol. 3, no. 11, pp. 741-752, 2006.
N. Gomez, C.E. Schmidt, “Nerve growth factor-immobilized polypyrrole: bioactive electrically conducting polymer for enhanced neurite extension,” J. Biomed. Mater. Res, vol. 81, no. 1, pp. 135-149. 2007.
J.Y. Lee, C.A. Bashur, A.S. Goldstein, C.E. Schmidt, “Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications,” Biomaterials, vol. 30, no. 26, pp. 4325-4334, 2009.
D. Kai, M.P. Prabhakaran, G. Jin, S. Ramakrishna, “Polypyrrolecontained electrospun conductive nanofibrous membranes for cardiac tissue engineering,” J. Biomed. Mater. Res. A, vol. 99, no. 3, pp. 376-385, 2011.
A.D. Bendrea, L. Cianga, I. Cianga, “Review paper: progress in the field of conducting polymers for tissue engineering applications,” J. Biomater. Appl., vol. 26, no. 1, pp. 3-84, 2011.
Z. Zhang, M. Rouabhia, Z. Wang, C. Roberge, G. Shi, P. Roche, J. Li, L.H. Dao, “Electrically conductive biodegradable polymer composite for nerve regeneration: electricitystimulated neurite outgrowth and axon regeneration,” Artif Organs, vol. 31, no. 1, pp. 13-22, 2007.
E. Zuñiga-Aguilar, R. Olayo, O. Ramírez-Fernández, J. Morales, R. Godínez, “Nerve cells culture from lumbar spinal cord on surfaces modified by plasma pyrrole polymerization,” J Biomater Sci Polym Ed., vol. 25, no. 7, pp. 729-747, 2014.
X. Wang, X. Gu, C. Yuan, S. Chen, P. Zhang, T. Zhang, J. Yao, F. Chen, G. Chen “Evaluation of biocompatibility of polypyrrole in vitro and in vivo,” J Biomed Mater Res A, vol. 68, no. 3, pp. 411-422, 2004.
R. Olayo, C. Ríos, H. Salgado-Ceballos, G. Cruz, J. Morales, G. Olayo, L. Alvarez, R. Mondragón, A. Morales- Guadarrama, G. Guizar-Sahagun, A. Diaz-Ruiz, “Tissue spinal cord response in rats after implants of polypyrrole and polyethylene glicol obtained by plasma,” J Mater Sci:Mater Med, vol. 19, no. 2, pp. 817-826, 2008.
G.J. Cruz, R. Mondragón-Lozano, A. Diaz-Ruiz, J. Manjarrez, R. Olayo, H. Salgado-Ceballos, M.G. Olayo, J. Morales, L. Alvarez-Mejía, A. Morales, M. Méndez-Armenta, N. Plascencia, M. Fernandez, C. Ríos “Plasma polypyrrole implants recover motor function in rats after spinal cord transection,” J Mater Sci:Mater Med, vol. 23, no. 10, pp. 2583-2592, 2012.
A. Morales-Guadarrama, H. Salgado- Ceballos, J. Morales, C. Ríos, G.J. Cruz, A. Diaz-Ruiz, M.G. Olayo, L. Alvarez-Mejia, R. Mondragón-Lozano, R. Olayo, “CAT and MRI studies of spinal cord injured rats implanted with PPy/I,” Revista Mexicana en Ingeniería Biomédica, vol. 34, no. 2, pp. 145-155, 2013.
T.V. Vernitskaya, O.N. Efimov, “Polypyrrole: a conducting polymer; its synthesis, properties and applications,” Russian Chemical Reviews, vol. 66, no. 5, pp. 443-457, 1997.
G.J. Cruz, J. Morales, R. Olayo, “Films obtained by plasma polymerization of pyrrole,” Thin solid films, vol. 342, no. 1-2, pp. 119-126, 1999.
J. Morales, E. Pérez-Tejada, C.R. Montiel, V.H. Torres, R. Olayo, “Modificación superficial por plasma aplicada a biomateriales [Surface modification by plasma applied to biomaterials,” In: La Física Biológica en México: Temas Selectos 2 [Biological Physics in Mexico:Selected Items 2]. México D. F.: Colegio Nacional, pp. 241-257, 2008.
J. Luo, R. Borgens, R. Shi, “Polyethylene glycol immediately repairs neuronal membranes and inhibits free radical production after acute spinal cord injury,” J Neurochem, vol. 83, no. 2, pp. 471-480, 2002.
R. Shi “Polyethylene glycol repairs membrane damage and enhances functional recovery: a tissue engineering approach to spinal cord injury,” Neurosci Bull, vol. 29, no. 4, 460-466, 2013.
D.M. Basso, M.S. Beattie, J.C. Bresnahan “A sensitive and reliable locomotor rating scale for open field testing in rats,” J. Neurotrauma, vol. 12, pp. 1-21, 1995.
J. Wang, K.G. Neoh, E.T. Kang, “Comparative study of chemically synthesized and plasma polymerized pyrrole and thiophene thin films,” Thin Solid Films, vol. 446, no. 2, pp. 205- 217, 2004.
M.M. Kamal, A.H. Bhuiyan, “Structural and optical characterization of plasma polymerized pyrrole monolayer thin films,” Advances in Optoelectronic Materials (AOM), vol. 1, no. 2, pp. 11-17, 2013.
C.Y. De Leon, B. Garem, “A New Approach to porphobilinogen and its analogs,” Tetrahedron, vol. 23, no. 9, pp. 7731-7752, 1997.
A.M. Manning, D.J. Davis, “Targeting JNK for therapeutic benefit: from junk to gold?,” Nat Rev Drug Discov., vol. 2, no. 7, pp. 554-565, 2003.
P. Roach, D. Eglin, K. Rohde, CC. Perry, “Modern biomaterials: a review - bulk properties and implications of surface modifications,” J Mater Sci Mater Med., vol. 18, no. 7, pp. 1263- 1277, 2007.
L.M. Gómez, M.G. Olayo, G.J. Cruz, M. González-Torres, O.G. López, C. De Jesús, “Interaction of plasma polypyrrole particles with ionic solutions,” Macromolecular Symposia, vol. 325-326, no. 1, pp. 112-119, 2013.
E. Colín, M.G. Olayo, G.J. Cruz, L. Carapia, J. Morales, R. Olayo, “Affinity of amine-functionalized plasma polymers with ionic solutions similar to those in the human body,” Progress in Organic Coatings, pp. 64322-326, 2009.
A. Kotwal, C.E. Schmidt, “Electrical stimulation alters protein adsorption and nerve cell interactions with electrically conducting biomaterials,” Biomaterials vol. 22, no. 10, pp. 1055- 1064, 2001.