2015, Número 6
<< Anterior Siguiente >>
Med Int Mex 2015; 31 (6)
Metformina: un arma noble para tiempos más civilizados
Ramos-Peñafiel CO, Santoyo-Sánchez A, Olarte-Carrillo I, Queipo-García GE, Garfias-Becerra Y, Martínez-Tovar A
Idioma: Español
Referencias bibliográficas: 68
Paginas: 719-732
Archivo PDF: 606.12 Kb.
RESUMEN
El objetivo del desarrollo actual de nuevos fármacos es diseñar moléculas altamente específicas, encaminadas hacia un solo blanco muy particular. En el pasado no muy lejano, hace apenas medio siglo, la principal labor de la industria farmacéutica era el aislamiento y purificación de los extractos herbales para su posterior síntesis y masificación comercial. Por ello, es comprensible que estos fármacos no son altamente específicos, pero sí sumamente efectivos; es el caso de los antimicrobianos, del ácido acetilsalicílico, de la pravastatina y del fármaco motivo de esta revisión: metfomina. En el caso particular de la metformina, por mucho tiempo se desconoció con exactitud su mecanismo de acción (y aún no se conocen todos), pero gracias al buen control metabólico obtenido es que perduró y se extendió su administración, hasta posicionarse como antidiabético de primera línea. Es justamente gracias a su amplia prescripción que se originaron observaciones epidemiológicas que identificaron la administración de
metformina como factor protector contra el cáncer. En el último decenio esta hipótesis se probó y verificó en diversos modelos
in vitro e
in vivo, se conocieron mejor los mecanismos de acción implicados y se permitió extender el espectro de prescripción a entidades clínicas tan distintas entre sí, como tuberculosis, periodontitis, cirrosis hepática e infarto de miocardio. Con este trabajo se espera hacer una rápida y concisa revisión al estado del arte de metformina, que sin duda alguna generará conocimiento de relevancia clínica acerca de este noble fármaco, que será parte indispensable del armamento del médico moderno.
REFERENCIAS (EN ESTE ARTÍCULO)
Krentz AJ, Bailey CJ. Oral antidiabetic agents: current role in type 2 diabetes mellitus. Drugs 2005;65:385-411.
Chan K, Truong D, Shangari N, O'Brien PJ. Drug-induced mitochondrial toxicity. Expert Opin Drug Metab Toxicol 2005;1:655-669.
Emami Riedmaier A, Fisel P, Nies AT, Schaeffeler E, Schwab M. Metformin and cancer: from the old medicine cabinet to pharmacological pitfalls and prospects. Trends Pharmacol Sci 2013;34:126-135.
Pernicova I, Korbonits M. Metformin--mode of action and clinical implications for diabetes and cancer. Nat Rev Endocrinol 2014;10:143-156.
Jayasena CN, Franks S. The management of patients with polycystic ovary syndrome. Nat Rev Endocrinol 2014;10:624-636.
Bowker SL, Yasui Y, Veugelers P, Johnson JA. Glucose-lowering agents and cancer mortality rates in type 2 diabetes: assessing effects of time-varying exposure. Diabetologia 2010;53:1631-1637.
Baur DM, Klotsche J, Hamnvik OP, Sievers C, et al. Type 2 diabetes mellitus and medications for type 2 diabetes mellitus are associated with risk for and mortality from cancer in a German primary care cohort. Metabolism 2011;6:1363-1371.
Col NF, Ochs L, Springmann V, Aragaki AK, Chlebowski RT. Metformin and breast cancer risk: a meta-analysis and critical literature review. Breast Cancer Res Treat 2012;135:639-646.
Singh S, Singh PP, Singh AG, Murad MH, Sanchez W. Antidiabetic medications and the risk of hepatocellular cancer: a systematic review and meta-analysis. Am J Gastroenterol 2013;108:881-891.
Zhang ZJ, Li S. The prognostic value of metformin for cancer patients with concurrent diabetes: a systematic review and meta-analysis. Diabetes Obes Metab 2014;16:707-710.
Wang Z, Lai ST, Xie L, Zhao JD, et al. Metformin is associated with reduced risk of pancreatic cancer in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. Diabetes Res Clin Pract 2014;106:19-26.
Zhang ZJ, Zheng ZJ, Kan H, Song Y, et al. Reduced risk of colorectal cancer with metformin therapy in patients with type 2 diabetes: a meta-analysis. Diabetes Care 2011;34:2323-2328.
Sonnenschein C, Soto AM. The aging of the 2000 and 2011 Hallmarks of Cancer reviews: a critique. J Biosci 2013;38:651-663.
Kharaishvili G, Simkova D, Bouchalova K, Gachechiladze M, et al. The role of cancer-associated fibroblasts, solid stress and other microenvironmental factors in tumor progression and therapy resistance. Cancer Cell Int 2014;14:41.
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144:646-674.
Kawaguchi M, Kataoka H. Mechanisms of hepatocyte growth factor activation in cancer tissues. Cancers (Basel) 2014;6:1890-1904.
Liu B, Fan Z, Edgerton SM, Deng X-S, et al. Metformin induces unique biological and molecular responses in triple negative breast cancer cells. Cell Cycle 2009;8:2031-2040.
Koh M, Lee JC, Min C, Moon A. A novel metformin derivative, HL010183, inhibits proliferation and invasion of triple-negative breast cancer cells. Bioorg Med Chem 2013;21:2305-2313.
Kim HG, Hien TT, Han EH, Hwang YP, et al. Metformin inhibits P-glycoprotein expression via the NF-κB pathway and CRE transcriptional activity through AMPK activation. Br J Pharmacol 2011;162:1096-108.
Lin CC, Yeh HH, Huang WL, Yan JJ, et al. Metformin enhances cisplatin cytotoxicity by suppressing signal transducer and activator of transcription-3 activity independently of the liver kinase B1-AMP-activated protein kinase pathway. Am J Respir Cell Mol Biol 2013;49:241-250.
Nakamura M, Ogo A, Yamura M, Yamaguchi Y, Nakashima H. Metformin suppresses sonic hedgehog expression in pancreatic cancer cells. Anticancer Res 2014;34:1765-1769.
Lesan V, Ghaffari SH, Salaramoli J, Heidari M, et al. Evaluation of antagonistic effects of metformin with Cisplatin in gastric cancer cells. Int J Hematol Oncol Stem cell Res 2014;8:12-19.
Dirat B, Ader I, Golzio M, Massa F, et al. Inhibition of the GTPase Rac1 mediates the antimigratory effects of metformin in prostate cancer cells. Mol Cancer Ther 2015;14:586-596.
Ramos-Peñafiel CO, Olarte-Carrillo I, Martínez-Tovar A, Castellanos-Sinco H, et al. Effect of Metformin to a pretreatment with steroids in adult patients with acute lymphoblastic leukemia and in the viability of the MOLT-4 cell line. Med UIS 2014;27:221-229.
Fan C, Wang Y, Liu Z, Sun Y, et al. Metformin exerts anticancer effects through the inhibition of the Sonic hedgehog signaling pathway in breast cancer. Int J Mol Med 2015;36:204-214.
Thakur S, Viswanadhapalli S, Kopp JB, Shi Q, et al. Activation of AMP-activated protein kinase prevents TGF-β1-induced epithelial-mesenchymal transition and myofibroblast activation. Am J Pathol 2015;185:2168-2180.
Tanaka R, Tomosugi M, Horinaka M, Sowa Y, Sakai T. Metformin causes G1-phase arrest via down-regulation of MiR-221 and enhances TRAIL Sensitivity through DR5 Up-regulation in pancreatic cancer cells. PLoS One 2015;10:0125779.
Dowling RJ, Niraula S, Stambolic V, Goodwin PJ. Metformin in cancer: translational challenges. J Mol Endocrinol 2012;48:31-43.
Serrano M. Metformin and reprogramming into iPSCs. Cell Cycle 2012;11:1058-1059.
Memmott RM, Mercado JR, Maier CR, Kawabata S, et al. Metformin prevents tobacco carcinogen--induced lung tumorigenesis. Cancer Prev Res (Phila) 2010;3:1066-1076.
Zins K, Lucas T, Reichl P, Abraham D, Aharinejad S. A Rac1/ Cdc42 GTPase-specific small molecule inhibitor suppresses growth of primary human prostate cancer xenografts and prolongs survival in mice. PLoS One 2013;8:74924.
Honjo S, Ajani JA, Scott AW, Chen Q, et al. Metformin sensitizes chemotherapy by targeting cancer stem cells and the mTOR pathway in esophageal cancer. Int J Oncol 2014;45:567-574.
Altieri DC. Survivin, versatile modulation of cell division and apoptosis in cancer. Oncogene 2003;22:8581-8589.
Yang J, Liu F-X, Yan X-C. [Research advances on inhibitor of apoptosis, survivin]. Ai Zheng 2003;22:771-774.
Yamamoto T, Tanigawa N. The role of survivin as a new target of diagnosis and treatment in human cancer. Med Electron Microsc 2001;34:207-212.
Dean M, Rzhetsky A, Allikmets R. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res 2001;11:1156-1166.
Szakács G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM. Targeting multidrug resistance in cancer. Nat Rev Drug Discov 2006;5:219-234.
Moitra K, Lou H, Dean M. Multidrug efflux pumps and cancer stem cells: insights into multidrug resistance and therapeutic development. Clin Pharmacol Ther 2011;89:491-502.
Glazer RI, Rohlff C. Transcriptional regulation of multidrug resistance in breast cancer. Breast Cancer Res Treat 1994;31:263-271.
Rohlff C, Glazer RI. Regulation of the MDR1 promoter by cyclic AMP-dependent protein kinase and transcription factor Sp1. Int J Oncol 1998;12:383-386.
Parissenti AM, Gannon BR, Villeneuve DJ, Kirwan-rhude AF, et al. Lack of modulation of MDR1 gene expression by dominant inhibition of cAMP-dependent protein kinase in doxorubicin-resistant MCF-7 breast cancer cells. Int J Cancer 1999;82:893-900.
Tseng CH. Metformin significantly reduces incident prostate cancer risk in Taiwanese men with type 2 diabetes mellitus. Eur J Cancer 2014;50:2831-2837.
Boudreau DM, Yu O, Buist DSM, Miglioretti DL. Statin use and prostate cancer risk in a large population-based setting. Cancer Causes Control 2008;19:767-774.
Zhang Y, Zang T. Association between statin usage and prostate cancer prevention: a refined meta-analysis based on literature from the years 2005-2010. Urol Int 2013;90:259-262.
Chao C, Jacobsen SJ, Xu L, Wallner LP, et al. Use of statins and prostate cancer recurrence among patients treated with radical prostatectomy. BJU Int 2013;111:954-962.
Lehman DM, Lorenzo C, Hernandez J, Wang CP. Statin use as a moderator of metformin effect on risk for prostate cancer among type 2 diabetic patients. Diabetes Care 2012;35:1002-1007.
Danzig MR, Kotamarti S, Ghandour RA, Rothberg MB, et al. Synergism between metformin and statins in modifying the risk of biochemical recurrence following radical prostatectomy in men with diabetes. Prostate Cancer Prostatic Dis 2015;18:63-68.
Chen-Pin W, Javier H, Lorenzo C, Downs JR, et al. Statins and finasteride use differentially modify the impact of metformin on prostate cancer incidence in men with type 2 diabetes. Ann Transl Med Epidemiol 2014;1:1004.
Martínez-González J, Badimon L. Efecto temprano de las estatinas después de un infarto de miocardio. ¿Se debe a los efectos pleiotrópicos? Med Clin (Barc) 2006;12:334-336.
Ruiz-Bailén M. Administración de estatinas durante la fase aguda del síndrome coronario agudo. Med Intensiva 2010;34:56-63.
Ladeiras-Lopes R, Fontes-Carvalho R, Bettencourt N, Sampaio F, et al. Novel therapeutic targets of metformin: metabolic syndrome and cardiovascular disease. Expert Opin Ther Targets 2015;19:869-877.
Bai J, Zhang N, Hua Y, Wang B, et al. Metformin inhibits angiotensin II-induced differentiation of cardiac fibroblasts into myofibroblasts. PLoS One 2013;8:72120.
Mellbin LG, Malmberg K, Norhammar A, Wedel H, Rydén L. The impact of glucose lowering treatment on long-term prognosis in patients with type 2 diabetes and myocardial infarction: a report from the DIGAMI 2 trial. Eur Heart J 2008;29:166-176.
Lexis CP, Wieringa WG, Hiemstra B, van Deursen VM, et al. Chronic metformin treatment is associated with reduced myocardial infarct size in diabetic patients with ST-segment elevation myocardial infarction. Cardiovasc Drugs Ther 2014;28:163-171.
Calvert JW, Gundewar S, Jha S, Greer JJ, et al. Acute metformin therapy confers cardioprotection against myocardial infarction via AMPK-eNOS-mediated signaling. Diabetes 2008;57:696-705.
Soraya H, Rameshrad M, Mokarizadeh A, Garjani A. Metformin attenuates myocardial remodeling and neutrophil recruitment after myocardial infarction in rat. Bioimpacts 2015;5:3-8.
Lexis CP, van der Horst IC, Lipsic E, Wieringa WG, et al. Effect of metformin on left ventricular function after acute myocardial infarction in patients without diabetes: the GIPS-III randomized clinical trial. JAMA 2014;311:1526-1535.
Li Y, Liu L, Wang B, Wang J, Chen D. Metformin in nonalcoholic fatty liver disease: A systematic review and meta-analysis. Biomed Rep 2013;1:57-64.
Conde de la Rosa L, Vrenken TE, Buist-Homan M, Faber KN, Moshage H. Metformin protects primary rat hepatocytes against oxidative stress-induced apoptosis. Pharmacol Res Perspect 2015;3:00125.
Dyson J, Day C. Treatment of non-alcoholic fatty liver disease. Dig Dis 2014;32:597-604.
Rouabhia S, Milic N, Abenavoli L. Metformin in the treatment of non-alcoholic fatty liver disease: safety, efficacy and mechanism. Expert Rev Gastroenterol Hepatol 2014;8:343-349.
Zhang X, Harmsen WS, Mettler TA, Kim WR, et al. Continuation of metformin use after a diagnosis of cirrhosis significantly improves survival of patients with diabetes. Hepatology 2014;60:2008-2016.
Tsochatzis EA, Bosch J, Burroughs AK. Future treatments of cirrhosis. Expert Rev Gastroenterol Hepatol 2014;8:571-581.
Goto K, Lin W, Zhang L, Jilg N, et al. The AMPK-related kinase SNARK regulates hepatitis C virus replication and pathogenesis through enhancement of TGF-β signaling. J Hepatol 2013;59:942-948.
Singhal A, Jie L, Kumar P, Hong GS, et al. Metformin as adjunct antituberculosis therapy. Sci Transl Med 2014;6:263ra159.
Vashisht R, Brahmachari SK. Metformin as a potential combination therapy with existing front-line antibiotics for Tuberculosis. J Transl Med 2015;13:83.
Pradeep AR, Patnaik K, Nagpal K, Karvekar S, et al. Efficacy of locally-delivered 1% metformin gel in the treatment of intrabony defects in patients with chronic periodontitis: a randomized, controlled clinical trial. J Investig Clin Dent 2015;doi: 10.1111.
Alves MG, Martins AD, Vaz CV, Correia Set al. Metformin and male reproduction: effects on Sertoli cell metabolism. Br J Pharmacol 2014;171:1033-1042.