2015, Número 1
<< Anterior Siguiente >>
Biotecnol Apl 2015; 32 (1)
Diseño del ciclo de liofilización de una formulación del dipéptido L-leucil-L-alanina basado en sus propiedades térmicas
Sánchez-González A, Hernández-González GR
Idioma: Ingles.
Referencias bibliográficas: 28
Paginas: 1221-1225
Archivo PDF: 477.20 Kb.
RESUMEN
El sistema para la detección de la fenilcetonuria (UMTEST
® PKU) en recién nacidos, se produce en el Centro de Inmunoensayo (CIE, La Habana, Cuba). La L-leucil-L-alanina, uno de los componentes del diagnosticador, requiere ser liofilizado debido a su limitada estabilidad en solución acuosa. La utilización de las técnicas de Análisis Térmico Diferencial/Impedancia (ATD/Zsinφ) y la liomicroscopía permitieron definir que en la liofilización de este reactivo, la congelación requiere ser realizada a temperaturas inferiores a –30 °C, mientras que en el secado primario la temperatura del frente de sublimación no puede sobrepasar el valor de temperatura de colapso (Tc) de –18.9 ºC. La liofilización de tres lotes a escala industrial, ejecutada con el procedimiento diseñado según los resultados de las determinaciones previamente descritas, garantizó la obtención de un producto acorde a las especificaciones de calidad, con una reducción del 32 % en el tiempo total del ciclo.
REFERENCIAS (EN ESTE ARTÍCULO)
Kaye CI; the Committee on Genetics. Newborn Screening Fact Sheets. Pediatrics 2006;118:e934-63.
Arneson W, Brickell J. Clinical Chemistry: A Laboratory Perspective. Philadelphia: F. A. Davis Co.; 2007.
Moyle JJ, Fox AM, Arthur M, Bynevelt M, Burnett JR. Meta-analysis of neuropsychological symptoms of adolescents and adults with PKU. Neuropsychol Rev. 2007;17(2):91-101.
Mei JV, Alexander JR, Adam BW, Hannon WH. Use of filter paper for the collection and analysis of human whole blood specimens. J Nutr. 2001;131(5):1631S-6S.
Martínez L, Robaina Z, García S, Guti- érrez E. The Cuban program for neonatal screening of phenylketonuria. Twenty years of experience: the clinical and social attention. Rev Cubana Genet Comunit. 2008;2:45-51.
Gonzalez EC, Marrero N, Perez PL, Frometa A, Zulueta O, Herrera D, et al. An enzyme immunoassay for determining 17alpha-hydroxyprogesterone in dried blood spots on filter paper using an ultramicroanalytical system. Clin Chim Acta. 2008;394(1-2):63-6.
Pikal MJ. Freeze drying. In: Swarbrick J, editor. Encyclopedia of Pharmaceutical Technology. New York: Informa Healthcare; 2007; p. 1807-33.
Tang X, Pikal MJ. Design of freeze-drying processes for pharmaceuticals: practical advice. Pharm Res. 2004;21(2):191-200.
Matejschuk P, Malik K, Duru C, Bristow A. Freeze drying of biologicals: process development to ensure biostability. Amer Pharm Rev 2009;12(2):12-7.
Rey L, May JC. Freeze-Drying/Lyophilization of Pharmaceutical and Biological Products. New York: Marcel Dekker; 2004.
Searles JA, Nail SL. Elements of quality design in development and scale-up of freeze dried parenterals. Biopharm Int. 2008;21(1):44-52.
Kasper JC, Winter G, Friess W. Recent advances and further challenges in lyophilization. Eur J Pharm Biopharm. 2013;85(2):162-9.
Bosca S, Barresi AA, Fissore D. Fast freeze-drying cycle design and optimization using a PAT based on the measurement of product temperature. Eur J Pharm Biopharm. 2013;85(2):253-62.
Geidobler R, Winter G. Controlled ice nucleation in the field of freeze-drying: fundamentals and technology review. Eur J Pharm Biopharm. 2013;85(2):214-22.
Tang XC, Nail SL, Pikal MJ. Evaluation of manometric temperature measurement, a process analytical technology tool for freeze-drying: part II measurement of dry-layer resistance. AAPS PharmSciTech. 2006;7(4):93.
Fissore D, Galan M, Pisano R, Velardi S, Barresi A. PAT Tools for the Optimization of the freeze-drying process. Pharm Eng. 2009;29(5):58-68.
Awotwe-Otoo D, Agarabi C, Wu GK, Casey E, Read E, Lute S. Quality by design : Impact of formulation variables and their interactions on quality attributes of a lyophilized monoclonal antibody. Int J Pharm. 2012;438:167-75.
Meister E, Gieseler H. Freeze-dry microscopy of protein/sugar mixtures: drying behavior, interpretation of collapse temperatures and a comparison to corresponding glass transition data. J Pharm Sci. 2009;98(9):3072-87.
Schersch KB. Effect of collapse on pharmaceutical protein liophilizates [PhD Thesis]. Munich, Germany: Ludwig-Maximilians University; 2009.
Shalaev EY, Johnson-Elton TD, Chang L, Pikal MJ. Thermophysical properties of pharmaceutically compatible buffers at sub-zero temperatures: implications for freeze-drying. Pharm Res. 2002;19(2):195-201.
Hajare AA, More HN, Walekar PS, Hajare DA. Optimization of freeze drying cycle protocol using real time microscopy and integrated differential thermal analysis-electrical impedance. Res J Pharm Tech. 2012;5(7):985-91.
Jenning TA. Lyophilization Seminar. La Habana: Phase Technologies Inc.; 2003.
Rutzinger S. Freeze Drying Microscopy: Introduction and Relevance for Process Design. Erlangen: University of Erlangen-Numberg; 2009.
Ma X, Wang DQ, Bouffard R, MacKenzie A. Characterization of murine monoclonal antibody to tumor necrosis factor (TNF-MAb) formulation for freeze-drying cycle development. Pharm Res. 2001;18(2):196-202.
Pikal MJ, Tang X, Nail SL, inventors; University of Connecticut, Assignee. Automated process control using manometric temperature measurement. United States Patent US 6,971,187 B1; 2005 Dec.
Rambhatla S, Ramot R, Bhugra C, Pikal MJ. Heat and mass transfer scale-up issues during freeze drying: II. Control and characterization
of the degree of supercooling. AAPS PharmSciTech. 2004;5(4):e58.
27.Kasper CJ. Lyophilization of Nucleic Acid Nanoparticles. Formulation development, stabilization mechanisms, process monitoring [PhD Thesis]. Munich, Germany: Ludwig-Maximilians University; 2012.