2015, Número 2
<< Anterior Siguiente >>
Neumol Cir Torax 2015; 74 (2)
Humo de biomasa, inmunidad innata y Mycobacterium tuberculosis
Sada-Ovalle I, Ocaña-Guzmán R, Torre-Bouscoulet L
Idioma: Español
Referencias bibliográficas: 77
Paginas: 118-126
Archivo PDF: 247.24 Kb.
RESUMEN
Existe evidencia epidemiológica consistente que asocia, de manera independiente, la inhalación crónica de humo de biocombustibles con el desarrollo de tuberculosis pulmonar. Los mecanismos fisiopatológicos que subyacen dicha asociación son parcialmente conocidos. El humo de biocombustibles tiene diversos efectos a nivel del parénquima pulmonar y del sistema inmune innato los cuales, en su conjunto, podrían aumentar la susceptibilidad a diversas infecciones incluyendo
Mycobacterium tuberculosis. En esta revisión describimos las características fisicoquímicas más importantes de las partículas presentes en el humo de biocombustibles y la forma en que éstas afectan algunos de los mecanismos inmunológicos que participan en la respuesta inmune contra
Mycobacterium tuberculosis.
REFERENCIAS (EN ESTE ARTÍCULO)
Kocbach Bølling A, Pagels J, Yttri KE, et al. Health effects of residential wood smoke particles: the importance of combustion conditions and physicochemical particle properties. Part Fibre Toxicol 2009;6:29. doi:10.1186/1743-8977-6-29.
Babalık A, Bakırcı N, Taylan M, et al. Biomass smoke exposure as a serious health hazard for women. Tuberk Toraks 2013;61(2):115-121.
Lim SS, Vos T, Flaxman AD, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012;(380):2224-2260. doi:10.1016/S0140-6736(12)61766-8.
Palma P, Cappiello A, De Simonii E, et al. Identification of levoglucosan and related steroisomers in fog water as a biomass combustion tracer by ESI-MS/MS. Ann Chim 2004;94(12):911-919. doi:10.1002/adic.200490113.
Rowland FS, Blake DR, Larsen BR, et al. Abstracts of the 6th FECS Conference 1998 Lectures. Environ Sci Pollut Res Int 1998;5(3):119-196. doi:10.1007/BF02986409.
Institute WR. World resources: Guide to global environment. Oxford: University press; 1998.
Song Y, Tang X, Xie S, et al. Source apportionment of PM2.5 in Beijing in 2004. J Hazard Mater 2007;146(1-2):124-130.
Smith KR, Mehta S. The burden of disease from indoor air pollution in developing countries: comparison of estimates. Int J Hyg Environ Health 2003;206(4-5):279-289.
Kurmi OP, Semple S, Simkhada P, Smith WC, Ayres JG. COPD and chronic bronchitis risk of indoor air pollution from solid fuel: a systematic review and meta-analysis. Thorax 2010;65(3):221-228. doi: 10.1136/thx.2009.124644.
Dherani M, Pope D, Mascarenhas M, Smith KR, Weber M, Bruce N. Indoor air pollution from unprocessed solid fuel use and pneumonia risk in children aged under five years: a systematic review and meta-analysis. Bull World Health Organ 2008;86:390-398C. doi:10.2471/BLT.07.044529.
Masera OR, Guerrero G, Ghilardi A. Fuelwood “hot spots” in Mexico: A case study using WISDOM. FAO: Rome; 2004.
INEGI. Censo de poblacion y vivienda. 2010. Accesible en:
Gauggel S, Derreza-Greeven C, Wimmer J, Wingfield M, van der Burg B, Dietrich DR. Characterization of biologically available wood combustion particles in cell culture medium. ALTEX 2012;29(2):183-200.
Tapanainen M, Jalava PI, Mäki-Paakkanen J, et al. Efficiency of log wood combustion affects the toxicological and chemical properties of emission particles. Inhal Toxicol 2012;24(6):343-355. doi: 10.3109/08958378.2012.671858.
Torres-Duque C, Maldonado D, Pérez-Padilla R, Ezzati M, Viegi G; Forum of International Respiratory Studies (FIRS) Task Force on Health Effects of Biomass Exposure. Biomass fuels and respiratory diseases:a review of the evidence. Proc Am Thorac Soc 2008;5(5):577-590. doi: 10.1513/pats.200707-100RP.
Yari M, Fouladi N, Ahmadi H, Najafi F. Profile of acute carbon monoxide poisoning in west province of Iran. J Coll Physicians Surg Pak 2012;22(6):381-384. doi: 06.2012/JCPSP.381384.
Miyata R, van Eeden SF. The innate and adaptative immune response induced by alveolar macrophages exposed to ambient particulate matter. Toxicol Appl Pharmacol 2011;257(2):209-226. doi: 10.1016/j.taap.2011.09.007.
Dobson J. Percivall Pott. Ann R Coll Surg Engl 1972;50(1):54-65.
Solhaug A, Refsnes M, Låg M, Schwarze PE, Husøy T, Holme JA. Polycyclic aromatic hydrocarbons induce both apoptotic and anti-apoptotic signals in Hepa1c1c7 cells. Carcinogenesis 2004;25(59):809-819.
van Zandvoort I, Wang Y, Rasrendra CB, et al. Formation, molecular structure, and morphology of humins in biomass conversion: influence of feedstock and processing conditions. ChemSusChem 2013;6(9):1745-1758. doi:10.1002/cssc.201300332.
Amador-Muñoz O, Villalobos-Pietrini R, Aragón-Piña A, Tran TC, Morrison P, Marriott PJ. Quantification of polycyclic aromatic hydrocarbons based on comprehensive two-dimensional gas chromatography-isotope dilution mass spectrometry. J Chromatogr A 2008;1201(2):161-168. doi: 10.1016/j.chroma.2008.06.028.
Teixeira EC, Mattiuzi CD, Agudelo-Castañeda DM, Garcia Kde O, Wiegand F. Polycyclic aromatic hydrocarbons study in atmospheric fine and coarse particles using diagnostic ratios and receptor model in urban/industrial region. Environ Monit Assess 2013;185(11):9587-9602. doi: 10.1007/s10661-013-3276-2.
Agudo A; Instituto Catalán de Oncología. Los hidrocarburos aromáticos policíclicos. Acercamiento a su problemática como riesgo laboral. Madrid: Secretaría de Salud laboral y Medio Ambiente MCA-UGT; 2010.pp.127.
Binková B, Cerná M, Pastorková A, et al. Biological activities of organic compounds adsorbed onto ambient air particles: comparison between the cities of Teplice and Prague during the summer and winter seasons 2000-2001. Mutat Res 2003;525(1-2):43-59.
Vives I, Grimalt JO, Guitart R. Los hidrocarburos aromáticos policíclicos y la salud humana. Apuntes de Ciencia y Tecnología 2002;(3):45-51.
de Oliveira Alves N, Matos Loureiro AL, Dos Santos FC, et al. Genotoxicity and composition of particulate matter from biomass burning in the eastern Brazilian Amazon region. Ecotoxicol Environ Saf 2011;74(5):1427-1433. doi:10.1016/j.ecoenv.2011.04.007.
Hernández-Garduño E, Brauer M, Pérez-Neria J, Vedal S. Wood smoke exposure and lung adenocarcinoma in non-smoking Mexican women. Int J Tuberc Lung Dis 2004;8(3):377-383
Ramanakumar AV, Parent ME, Siemiatycki J. Risk of lung cancer from residential heating and cooking fuels in Montreal, Canada. Am J Epidemiol 2007;165(6):634-642.
Pérez-Padilla R, Pérez-Guzmán C, Báez-Saldaña R, Torres-Cruz A. Cooking with biomass stoves and tuberculosis: a case control study. Int J Tuberc Lung Dis 2001;5(5):441-447.
Xu X, Niu T, Christiani DC, et al. Occupational and environmental risk factors for asthma in rural communities in China. Int J Occup Environ Health 1996;2(3):172-176
Nebert DW, Dalton TP. The role of cytochrome P450 enzymes in endogenous signalling pathways and environmental carcinogenesis. Nat Rev Cancer 2006;6(12):947-960.
Crofts F, Taioli E, Trachman J, et al. Functional significance of different human CYP1A1 genotypes. Carcinogenesis 1994;15(12):2961-2963.
Safe SH. Polychlorinated biphenyls (PCBs): environmental impact, biochemical and toxic responses, and implications for risk assessment. Crit Rev Toxicol 1994;24(2):87-149.
Cosma G, Crofts F, Taioli E, Toniolo P, Garte S. Relationship between genotype and function of the human CYP1A1 gene. J Toxicol Environ Health 1993;40(2-3):309-316.
Anderson RA, McIlwain L, Coutts S, Kinnell HL, Fowler PA, Childs AJ. Activation of the aryl hydrocarbon receptor by a component of cigarette smoke reduces germ cell proliferation in the human fetal ovary. Mol Hum Reprod 2014;20(1):42-48. doi: 10.1093/molehr/gat059.
Morino-Koga S, Uchi H, Tsuji G, et al. Reduction of CC-chemokine ligand 5 by aryl hydrocarbon receptor ligands. J Dermatol Sci 2013;72(1):9-15. doi:10.1016/j.jdermsci.2013.04.031.
Uno S, Dalton TP, Derkenne S, et al. Oral exposure to benzo[a]pyrene in the mouse: detoxication by inducible cytochrome P450 is more important than metabolic activation. Mol Pharmacol 2004;65(5):1225-1237.
Burchiel SW, Thompson TA, Lauer FT, Oprea TI. Activation of dioxin response element (DRE)-associated genes by benzo(a)pyrene 3,6-quinone and benzo(a)pyrene 1,6-quinone in MCF-10A human mammary epithelial cells. Toxicol Appl Pharmacol 2007;221(2):203-214.
Gao J, Lauer FT, Mitchell LA, Burchiel SW. Microsomal expoxide hydrolase is required for 7,12-dimethylbenz[a]anthracene (DMBA)-induced immunotoxicity in mice. Toxicol Sci 2007;98(1):137-144.
Nguyen LP, Bradfield CA. The search for endogenous activators of the aryl hydrocarbon receptor. Chem Res Toxicol 2008;21(1):102-116.
Petrulis JR, Kusnadi A, Ramadoss P, Hollingshead B, Perdew GH. The hsp90 Co-chaperone XAP2 alters importin beta recognition of the bipartite nuclear localization signal of the Ah receptor and represses transcriptional activity. J Biol Chem 2003;278(4):2677-2685.
Ikuta T, Tachibana T, Watanabe J, Yoshida M, Yoneda Y, Kawajiri K. Nucleocytoplasmic shuttling of the aryl hydrocarbon receptor. J Biochem 2000;127(3):503-509.
Bølling AK, Totlandsdal AI, Sallsten G, et al. Wood smoke particles from different combustion phases induce similar pro-inflammatory effects in a co-culture of monocyte and pneumocyte cell lines. Part Fibre Toxicol 2012;9:45. doi: 10.1186/1743-8977-9-45.
Swiston JR, Davidson W, Attridge S, Li GT, Brauer M, van Eeden SF. Wood smoke exposure induces a pulmonary and systemic inflammatory response in firefighters. Eur Respir J 2008;32(1):129-138. doi: 10.1183/09031936.00097707.
Tellabati A, Fernandes VE, Teichert F, et al. Acute exposure of mice to high-dose ultrafine carbon black decreases susceptibility to pneumococcal pneumonia. Part Fibre Toxicol 2010;7:30. doi: 10.1186/1743-8977-7-30.
Migliaccio CT, Kobos E, King QO, Porter V, Jessop F, Ward T. Adverse effects of wood smoke PM(2.5) exposure on macrophage functions. Inhal Toxicol 2013;25(2):67-76. doi: 10.3109/08958378.2012.756086.
Renwick LC, Brown D, Clouter A, Donaldson K. Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particle types. Occup Environ Med 2004;61(5):442-447.
Totlandsdal AI, Låg M, Lilleaas E, Cassee F, Schwarze P. Differential proinflammatory responses induced by diesel exhaust particles with contrasting PAH and metal content. Environ Toxicol 2015;30(2):188-196. doi: 10.1002/tox.21884.
Shoenfelt J, Mitkus RJ, Zeisler R, et al. Involvement of TLR2 and TLR4 in inflammatory immune responses induced by fine and coarse ambient air particulate matter. J Leukoc Biol 2009;86(2):303-312. doi: 10.1189/jlb.1008587.
Kerkhof M, Postma DS, Brunekreef B, et al. Toll-like receptor 2 and 4 genes influence susceptibility to adverse effects of traffic-related air pollution on childhood asthma. Thorax 2010;65(8):690-697. doi: 10.1136/thx.2009.119636.
Samet JM, Rappold A, Graff D, et al. Concentrated ambient ultrafine particle exposure induces cardiac changes in young healthy volunteers. Am J Respir Crit Care Med 2009;179(11):1034-1042. doi: 10.1164/rccm.200807-1043OC.
Fan J, Li Y, Levy RM, et al. Hemorrhagic shock induces NAD(P)H oxidase activation in neutrophils: role of HMGB1-TLR4 signaling. J Immunol 2007;178(10).6573-6580.
Mazzoli-Rocha F, Fernandes S, Einicker-Lamas M, Zin WA. Roles of oxidative stress in signaling and inflammation induced by particulate matter. Cell Biol Toxicol 2010;26(5):481-498. doi: 10.1007/s10565-010-9158-2.
Cuschieri J, Gourlay D, Garcia I, Jelacic S, Maier RV. Slow channel calcium inhibition blocks proinflammatory gene signaling and reduces macrophage responsiveness. J Trauma 2002;52(3):434-442.
Kido T, Tamagawa E, Bai N, et al. Particulate matter induces translocation of IL-6 from the lung to the systemic circulation. Am J Respir Cell Mol Biol 2011;44(2):197-204. doi:10.1165/rcmb.2009-0427OC.
Pacheco KA, Tarkowski M, Sterritt C, Negri J, Rosenwasser LJ, Borish L. The influence of diesel exhaust particles on mononuclear phagocytic cell-derived cytokines: IL-10, TGF-beta and IL-1 beta. Clin Exp Immunol 2001;126(3):374-383.
Solhaug A, Refsnes M, Låg M, Schwarze PE, Husøy T, Holme JA. Polycyclic aromatic hydrocarbons induce both apoptotic and anti-apoptotic signals in Hepa1c1c7 cella. Carcinogenesis 2004;25(5):809-819.
van Grevenynghe J, Rion S, Le Ferrec E, et al. Polycyclic aromatic hydrocarbons inhibit differentiation of human monocytes into macrophages. J Immunol 2003;170(5):2374-2381.
Sehgal M, Rizwan SA, Krishnan A. Disease burden due to biomass cooking-fuel-related household air pollution among women in India. Glob Health Action 2014;7:25326. doi:10.3402/gha.v7.25326 (2014).
Pokhrel AK, Bates MN, Verma SC, Joshi HS, Sreeramareddy CT, Smith KR. Tuberculosis and indoor biomass and kerosene use in Nepal: a case-control study. Environ Health Perspect 2010;118(4):558-564. doi:10.1289/ehp.0901032.
Pérez-Padilla R, Pérez-Guzmán C, Báez-Saldaña R, Torres-Cruz A. Cooking with biomass stoves and tuberculosis: a case control study. Int J Tuberc Lung Dis 2001;5(5):441-447.
Perez-Padilla R, Schilmann A, Riojas-Rodriguez H. Respiratory health effects of indoor air pollution. Int J Tuberc Lung Dis 2010;14(9):1079-1086.
Bruce N, Perez-Padilla R, Albalak R. Indoor air pollution in developing countries: a major environmental and public health challenge. Bull World Health Organ 2000;78(9):1078-1092.
Torres-Duque C, Maldonado D, Pérez-Padilla R, Ezzati M, Viegi G; Forum of International Respiratory Studies (FIRS) Task Force on Health Effects of Biomass Exposure. Biomass fuels and respiratory diseases: a review of the evidence. Proc Am Thorac Soc 2008;5(5):577-590. doi:10.1513/pats.200707-100RP.
Bauernfeind F, Ablasser A, Bartok E, et al. Inflammasomes: current understanding and open questions. Cell Mol Life Sci 2011;68(5):765-783. doi:10.1007/s00018-010-0567-4.
Parameswaran N, Patial S. Tumor necrosis factor-alpha signaling in macrophages. Crit Rev Eukaryot Gene Expr 2010;20(2):87-103.
Klingler K, Tchou-Wong KM, Brändli O, et al. Effects of mycobacteria on regulation of apoptosis in mononuclear phagocytes. Infect Immun 1997;65(12):5272-5278.
Sly LM, Hingley-Wilson SM, Reiner NE, McMaster WR. Survival of Mycobacterium tuberculosis in host macrophages involves resistance to apoptosis dependent upon induction of antiapoptotic Bcl-2 family member Mcl-1. J Immunol 2003;170(1):430-437.
Vande Walle L, Lamkanfi M. Inflammasomes: caspase-1-activating platforms with critical roles in host defense. Front Microbiol 2011;2:3. doi:10.3389/fmicb.2011.00003.
Duewell P, Kono H, Rayner KJ, et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 2010;464(7293):1357-1361. doi:10.1038/nature08938.
Franchi L, Muñoz-Planillo R, Reimer T, Eigenbrod T, Núñez G. Inflammasomes as microbial sensors. Eur J Immunol 2010;40(3):611-615. doi:10.1002/eji.200940180.
Lee J, Repasy T, Papavinasasundaram K, Sassetti C, Kornfeld H. Mycobacterium tuberculosis induces an atypical cell death mode to escape from infected macrophages. PloS One 2011;6(3):e18367. doi:10.1371/journal.pone.0018367.
Fink SL, Cookson BT. Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun 2005;73(4): 1907-1916. doi:10.1128/IAI.73.4.1907-1916.2005.
Burg ND, Pillinger MH. The neutrophil: function and regulation in innate and humoral immunity. Clin Inmunol 2001;99(1):7-17.
Berenson CS, Garlipp MA, Grove LJ, Maloney J, Sethi S. Impaired phagocytosis of nontypeable Haemophilus influenzae by human alveolar macrophages in chronic obstructive pulmonary disease. J Infect Dis 2006;194(10):1375-1384.
Taylor AE, Finney-Hayward TK, Quint JK, et al. Defective macrophage phagocytosis of bacteria in COPD. Eur Respir J 2010;35(5):1039-1047. doi:10.1183/09031936.00036709.
Dagher Z, Garçon G, Billet S, et al. Role of nuclear factor-kappa B activation in the adverse effects induced by air pollution particulate matter (PM2.5) in human epithelial lung cells (L132) in culture. J Appl Toxicol 2007;27(3):284-290.