2015, Número 08
<< Anterior
Ginecol Obstet Mex 2015; 83 (08)
Implicaciones clínicas de la investigación básica de la preeclampsia: tolerancia inmunológica
Valencia-Ortega J, Zárate A, Saucedo R, Hernández-Valencia M, Cruz-Durán JG, Puello-Tamara E, Arechavaleta-Velasco F
Idioma: Español
Referencias bibliográficas: 108
Paginas: 505-514
Archivo PDF: 442.97 Kb.
RESUMEN
La preeclampsia es una de las principales causas de mortalidad materna y morbilidad perinatal en todo el mundo; sin embargo, su fisiopatogenia aún no está completamente clara. En la actualidad se sugiere que resulta de una ruptura de la tolerancia inmunitaria materna a los antígenos paternos en la placenta. Esto provoca una respuesta contra el trofoblasto, genera una defectuosa placentación y un ambiente hipóxico-isquémico que desencadena la respuesta inflamatoria característica del trastorno. Esta revisión detalla los mecanismos implicados en la tolerancia inmunitaria materna, su alteración en la
preeclampsia y la respuesta inflamatoria.
REFERENCIAS (EN ESTE ARTÍCULO)
Steegers EA, von Dadelszen P, Duvekot JJ, Pijnenborg R. Pre-eclampsia. Lancet 2010;376:631-644.
Khan KS, Wojdyla D, Say L, Gülmezoqlu AM, et al. WHO analysis of causes of maternal death: a systematic review. Lancet 2006;367:1066-1074.
Duley L. The global impact of pre-eclampsia and eclampsia. Semin Perinatol 2009;33:130-137.
Hansen JP. Older maternal age and pregnancy outcome: a review of the literature. Obstet Gynecol Surv 1986;41:726-742
Zhang J, Zeisler J, HatchMC, Berkowitz G. Epidemiology of pregnancy-induced hypertension. Epidemiol Rev 1997;19: 218-232.
Mabie W, Pernoll M, Biswas M. Chronic hypertension in pregnancy. Obstet Gynecol 1986;67:197-205.
Moutquin J, Rainville C, Giroux L. A prospective study of blood pressure in pregnancy: prediction of preeclampsia. Am J Obstet Gynecol 1985;151:191-196.
Garner P, D’Alton M, Dudley D, Huard P, et al. Preeclampsia in diabetic pregnancies. Am J Obstet Gynecol 1990;163:505-508.
Siddiqi T, Rosenn B, Mimouni F, Khoury J, et al. Hypertension during pregnancy in insulin-dependent diabetic women. Obstet Gynecol 1991;77:514-519.
Sibai B, Ewell M, Levine R. Risk factors associated with preeclampsia in healthy nulliparous women. Am J Obstet Gynecol 1997;177:1003-1010.
Bodnar LM, Catov JM, KlebanoffMA, Ness RB, et al. Prepregnancy body mass index and the occurrence of severe hypertensive disorders of pregnancy. Epidemiology 2007;18: 234-239.
Carr DB, Epplein M, Johnson CO, Easterling TR, et al. A sister’s risk: family history as a predictor of preeclamp-sia. Am J Obstet Gynecol 2005;193:965-972.
Esplin MS, Fausett MB, Fraser A, Kerber R, et al. Paternal and maternal components of the predisposition to preeclampsia. N Engl J Med 2001;344:867-872.
Zhang J, Zeisler J, HatchMC, Berkowitz G. Epidemiology of pregnancy-induced hypertension. Epidemiol Rev 1997;19:218-232.
Thomson A, Billewicz W. Clinical significance of weight trends during pregnancy. BMJ 1957;1:243-247.
Redman C. Immunology of preeclampsia. Semin Perinatol 1991;15:257-262.
Li DK, Wi S. Changing paternity and the risk of preeclampsia/eclampsia in the subsequent pregnancy. Am J Epidemiol 2000;151:57-62.
Robillard P, Hulsey T, Perianin J, Janky E, et al. Association of pregnancy-induced hypertension with duration of sexual cohabitation before conception. Lancet 1994;344:973-975.
Klonoff-Cohen H, Savitz D, Cefalo R, McCann M. An epidemiologic study of contraception and preeclampsia. JAMA 1989;262:3143-3147.
Zárate A, Renata S, Valencia J, Manuel L, et al. Early disturbed placental ischemia and hipoxia creates immune alteration and vascular disorder causing preeclampsia. Arch Med Res 2014;45:519-524.
Redman CW, Sargent IL. Immunology of pre-eclampsia. Am J Reprod Immunol 2010;63:534-543.
Aluvihare VR, Kallikourdis M, Betz AG. Tolerance, suppression and the fetal allograft. J Mol Med 2005;83:88-96.
Sargent IL, Borzychowski AM, Redman C. NK cells and human pregnancy–an inflammatory view. Trends immunol 2006;27:399-404.
Pantham P, Askelund KJ, Chamley LW. Trophoblast deportation part II: A review of maternal consequences of trophoblast deportation. Placenta 2011;32:724-731.
Apps R, Murphy SP, Fernando R, Gardner L, et al. Human leucocyte antigen (HLA) expression of primary trophoblast cells and placental cell lines, determined using single antigen beads to characterize allotype specificities of anti-HLA antibodies. Immunology 2009;127:26-39.
Solier C, Aguerre M, Lenfant F, Campan A, et al. Secretion of pro-apoptotic intron 4-retaining soluble HLA-G1 by human villous trophoblast. Eur J Immunol 2002;32:3576-3586.
Trowsdale J, Betz AG. Mother’s little helpers: Mechanisms of maternal-fetal tolerance. Nat Immunol 2006;7:241-246.
Geiselhart A, Dietl J, Marzusch K, Ruck P, et al. Comparative analysis of the immunophenotypes of decidual and peripheral blood large granular lymphocytes and T cells during early human pregnancy. Am J Reprod Immunol 1995;33:315-322.
King A. Uterine leukocytes and decidualization. Hum Reprod Update 2000;6:28-36.
Orange JS, Ballas ZK. Natural killer cells in human health and disease. Clin Immunol 2006;118:1-10.
Higuma S, Sasaki Y, Miyazaki S, Sakai M, et al. Cytokine profile of natural killer cells in early human pregnancy. Am J Reprod Immunol 2005;54:21-29.
Cooper MA, Fehniger TA, Turner SC, Chen KS, et al. Human natural killer cells: a unique innate immunoregulatory role for the CD56(bright) subset. Blood 2001;97:3146-3151.
Kopcow HD, Allan DS, Chen X, Rybalov B, et al. Human decidual NK cells form immature activating synapses and are not cytotoxic. Proc Natl Acad Sci U S A 2005;102:15563-15568.
Moretta L, Moretta A. Unravelling natural killer cell function: triggering and inhibitory human NK receptors. EMBO J 2004;23:255-259.
Haller H, Radillo O, Rukavina D, Tedesco F, et al. An immunohistochemical study of leucocytes in human endometrium, first and third trimester basal decidua. J Reprod Immunol 1993;23:41-49.
Hanna J, Goldman D, Hamani Y, Avraham I, et al. Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nat Med 2006;12:1065-1074.
Hunt JS, Petroff MG, McIntire RH, Ober C. HLA-G and immune tolerance in pregnancy. FASEB J 2005;19:681-693.
Soderstrom K, Corliss B, Lanier L, Phillips JH. CD94/NKG2 is the predominant inhibitory receptor involved in recognition of HLA-G by decidual and peripheral blood NK cells. J Immunol 1997;159:1072-1075.
Rajagopalan S, Long EO. A human histocompatibility leukocyte antigen (HLA)-G-specific receptor expressed on all natural killer cells. J Exp Med 1999;189:1093-1100.
Chumbley G, King A, Robertson K, Holmes N, et al. Resistance of HLA-G and HLA-A2 transfectants to lysis by decidual NK cells. Cellular Immunol 1994;155:312-322.
Rouas N, Marchal RE, Kirszenbaum M, Dausset J, et al. The alpha1 domain of HLA-G1 and HLA-G2 inhibits cytotoxicity induced by natural killer cells: is HLA-G the public ligand for natural killer cell inhibitory receptors? Proc Natl Acad Sci U S A 1997;94:5249-5254.
Chen LJ, Han ZQ, Zhou H, Zou L, et al. Inhibition of HLA-G expression via RNAi abolishes resistance of extravillous trophoblast cell line TEV-1 to NK lysis. Placenta 2010;31:519-527.
Cantoni C, Verdiani S, Falco M, Pessino A, et al. p49, a putative HLA class I-specific inhibitory NK receptor belonging to the immunoglobulin superfamily. Eur J Immunol 1998;28:1980-1990.
Colonna M, Navarro F, Bellon T, Llano M, et al. A common inhibitory receptor for major histocompatibility complex class I molecules on human lymphoid and myelomonocytic cells. J Exp Med 1997;186:1809-1818.
Peritt D, Robertson S, Gri G, Showe L, et al. Differentiation of human NK cells into NK1 and NK2 subsets. J Immunol 1998;161:5821-5824.
Deniz G, Akdis M, Aktas E, Blaser K, et al. Human NK1 and NK2 subsets determined by purification of IFN-γ- secreting and IFN-γ-nonsecreting NK cells. Eur J Immunol 2002;32:879-884.
Kwak JY, Gilman A, Kim CE. T helper 1 and 2 immune responses in relationship to pregnancy, nonpregnancy, recurrent spontaneous abortions and infertility of repeated implantation failures. Chem Immunol Allergy 2005;88:64-79.
Saito S, Sakai M. Th1/Th2 balance in preeclampsia. J Reprod Immunol 2003;59:161-173.
Borzychowski AM, Croy BA, Chan WL, Redman CW, et al. Changes in systemic type 1 and type 2 immunity in normal pregnancy and pre-eclampsia may be mediated by natural killer cells. Eur J Immunol 2005;35:3054-3063.
Mantovani A, Biswas SK, Galdiero MR, Sica A, et al. Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol 2013;229:176-185.
Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest2012;122:787-795).
Bulmer JN, Morrison L, Longfellow M, Ritson A, et al. Granulated lymphocytes in human endometrium: histochemical and immunohistochemical studies. Hum Reprod 1991;6:791-798.
Rieger L, Honig A, Sutterlin M, Kapp M, et al. Antigen-presenting cells in human endometrium during the menstrual cycle compared to early pregnancy. J Soc Gynecol Investig 2004;11:488-493.
Gustafsson C, Mjosberg J, Matussek A, Geffers R, et al. Gene expression profiling of human decidual macrophages: evidence for immunosuppressive phenotype. PLoS One 2008;3:e2078.
Heikkinen J, Mottonen M, Komi J, Alanen A, et al. Phenotypic characterization of human decidual macrophages. Clin Exp Immunol 2003;131:498-505.
Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol 2005;5:953-964.
Ziegler L, Ancuta P, Crowe S, Dalod M, et al. Nomenclature of monocytes and dendritic cells in blood. Blood 2010;116:e74-80.
Naccasha N, Gervasi MT, Chaiworapongsa T, Berman S, et al. Phenotypic and metabolic characteristics of monocytes and granulocytes in normal pregnancy and maternal infection. Am J Obstet Gynecol 2001;185:1118-1123.
Luppi P, Haluszczak C, Betters D, Richard CA, et al. Monocytes are progressively activated in the circulation of pregnant women. J Leukoc Biol 2002;72:874-884.
Sacks GP, Studena K, Sargent IL, Redman CW. Normal pregnancy and preeclampsia both produce inflammatory changes in peripheral blood leukocytes akin to those of sepsis. Am J Obstet Gynecol 1998;179:80-86.
Redman CW, Tannetta DS, Dragovic RA, Gardiner C. Review: does size matter? Placental debris and the pathophysiology of pre-eclampsia. Placenta 2012;33:S48-S54.
Bianchi DW, Zickwolf GK, Weil GJ, Sylvester S, et al. Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum. Proc Natl Acad Sci U S A 1996;93:705-708.
Faas MM, van Pampus MG, Anninga ZA, Salomons J, et al. Plasma from preeclamptic women activates endothelial cells via monocyte activation in vitro. J Reprod Immunol 2010;87:28-38.
Colonna M, Trinchieri G, Liu YJ. Plasmacytoid dendritic cells in immunity. Nat Immunol 2004;5:1219-1226.
Lutz MB, Schuler G. Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? Trends Immunol 2002;23:445-449.
Rutella S, Danese S, Leone G. Tolerogenic dendritics cells: cytokine modulation comes of age. Blood 2006;108:1435-1440.
Gardner L, Moffett A. Dendritic cells in the human decidua. Biol Reprod 2003;69:1438-1446.
Miyazaki S, Tsuda H, Sakai M, Hori S, et al. Predominance of Th2-promoting dendritic cells in early human pregnancy decidua. J Leukoc Biol 2003;74:514-522.
Lee HM, Bautista JL, Hsieh CS. Thymic and peripheral differentiation of regulatory T cells. Adv Immunol 2011;112:25-71.
Heikkinen J, Möttönen M, Alanen A, Lassila O. Phenotypic characterization of regulatory T cells in the human decidua. Clin Exp Immunol 2004;136:373-378.
Tilburgs T, Roelen DL, van der Mast BJ, de Groot-Swings GM, et al. Evidence for a selective migration of fetus-specific CD4+CD25bright regulatory T cells from the peripheral blood to the deciduas in human pregnancy. J Immunol 2008;180:5737-5745.
Hsu P, Santner B, Dahlstrom J, Fadia M, et al. Altered decidual DC-SIGNC antigen presenting cells and impaired regulatory T cell induction in preeclampsia. Am J Pathol 2012;181:2149-2160.
Curotto de Lafaille MA, Lafaille JJ. Natural and adaptive foxp3+ regulatory T cells: more of the same or a division of labor? Immunity 2009;30:626-635.
Yadav M, Stephan S, Bluestone JA. Peripherally induced tregs-role in immune homeostasis and autoimmunity. Front Immunol 2013;4:232.
Bilate AM, Lafaille JJ. Induced CD4+Foxp3+ regulatory T Cells in immune tolerance. Annu Rev Immunol 2012;30:733-758.
Somerset DA, Zheng Y, Kilby MD, Sansom DM, et al. Normal human pregnancy is associated with an elevation in the immune suppressive CD25+ CD4+ regulatory T-cell subset. Immunology 2004;112:38-43.
Santner B, Peek MJ, Khanam R, Richarts L, et al. Systemic increase in the ratio between Foxp3+ and IL-17-producing CD4+ T cells in healthy pregnancy but not in preeclampsia. J Immunol 2009;183:7023-7030.
Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 cells. Annu Rev Immunol 2009;27:485-517.
Mjosberg J, Berg G, Jenmalm MC, Ernerudh J. FOXP3+ regulatory T cells and T helper 1, T helper 2, and T helper 17 cells in human early pregnancy decidua. Biol Reprod 2010;82:698-705.
Nakashima A, Ito M, Yoneda S, Shiozaki A, et al. Circulating and decidual Th17 cell levels in healthy pregnancy. Am J Reprod Immunol 2010;63:104-109.
Hara N, Fujii T, Yamashita T, Kozuma S, et al. Altered expression of human leukocyte antigen G (HLA-G) on extravillous trophoblasts in preeclampsia: immunohistological demonstration with anti-HLA-G specific antibody “87G” and anti-cytokeratin antibody “CAM5.2”. Am J Reprod Immunol 1996;36:349-358.
Goldman DS, Ariel I, Greenfield C, Hochner-Celnikier D, et al. Lack of human leukocyte antigen-G expression in extravillous trophoblasts is associated with pre-eclampsia. Mol Hum Reprod 2000;6:88-95.
Shobu T, Sageshima N, Tokui H, Omura M, et al. The surface expression of HLA-F on decidual trophoblasts increases from mid to term gestation. J Reprod Immunol 2006;72:18-32.
Sageshima N, Ishitani A, Omura M, Akasaki M, et al. Necrotic feature of the trophoblasts lacking HLA-G expression in normal and pre-eclamptic placentas. Am J Reprod Immunol 2003;49:174-182.
Schonkeren D, van der Hoorn M, Khedoe P, Swings G, et al. Differential distribution and phenotype of decidual macrophages in preeclamptic versus control pregnancies. Am J Pathol 2011;178:709-717.
Rieger L, Segerer S, Bernar T, Kapp M et al. Specific subsets of immune cells in human decidua differ between normal pregnancy and preeclampsia--a prospective observational study. Reprod Biol Endocrinol 2009;7:132.
Yui J, Garcia M, Wegmann TG, Gilbert LJ. Cytotoxicity of tumour necrosis factor-alpha and gamma-interferon against primary human placental trophoblasts. Placenta 1994;15:819-835.
Mellembakken JR, Aukrust P, Olafsen MK, Ueland T, et al. Activation of leukocytes during the uteroplacental passage in preeclampsia. Hypertension 2002;39:155-160.
Gervasi MT, Chaiworapongsa T, Pacora P, Naccasha N, et al. Phenotypic and metabolic characteristics of monocytes and granulocytes in preeclampsia. Am J Obstet Gynecol 2001;185:792-797.
Luppi P, Tse H, Lain KY, Markovic N, et al. Preeclampsia activates circulating immune cells with engagement of the NF-kappaB pathway. Am J Reprod Immunol 2006;56:135-144.
Sacks GP, Redman CWG, Sargent IL. Monocytes are primed to produce the Th1 type cytokine IL-12 in normal human pregnancy: an intracellular flow cytometric analysis of peripheral blood mononuclear cells. Clin Exp Immunol 2003;131:490-497.
Sakai M, Tsuda H, Tanebe K, Sasaki Y, et al. Interleukin-12 secretion by peripheral blood mononuclear cells is decreased in normal pregnant subjects and increased in preeclamptic patients. Am J Reprod Immunol 2002;47:91-97.
Peraçoli JC, Rudge MV, Peraçoli MT. Tumor necrosis factor-alpha in gestation and puerperium of women with gestational hypertension and pre-eclampsia. Am J Reprod Immunol 2007;57:177-185.
van Nieuwenhoven AL, Moes H, Heineman MJ, Santema J, et al. Cytokine production by monocytes, NK cells and lymphocytes is different in preeclamptic patients as compared with normal pregnant women. Hypertens Pregnancy 2008;27:207-224.
Brewster JA, Orsi NM, Gopichandran N, Ekbote UV, et al. Host inflammatory response profiling in preeclampsia using an in vitro whole blood stimulation model. Hypertens Pregnancy 2008;27:1-16.
Bazavilvaso-Rodríguez MA, Hernández-Valencia M, Santillan-Morelos JG, Galvan-Duarte RE, et al. Oxidative stress changes in pregnant patients with and without severe preeclampsia. Arch Med Res 2011;42:195-198.
Redman CW, Sargent IL. Placental debris, oxidative stress and pre-eclampsia. Placenta 2000;21:597-602.
Steinberg G, Khankin EV, Karumanchi SA. Angiogenic factors and preeclampsia. Thromb Res 2009;123:S93-S99.
Spaans F, de Vos PD, Bakker WW, van Goor H, et al. Danger signals from ATP and adenosine in pregnancy and preeclampsia. Hypertension 2014;63:1154-1160.
Huang SJ, Chen CP, Schatz F, Rahman M, et al. Pre-eclampsia is associated with dendritic cell recruitment into the uterine decidua. J Pathol 2008;214:328-336.
Scholz C, Toth B, Santoso L, Kuhn C, et al. Distribution and maturity of dendritic cells in diseases of insufficient placentation. Am J Reprod Immunol 2008;60:238-245.
Samstein R, Josefowicz S, Arvey A, Treuting PM, et al. Extrathymic generation of regulatory T cells in placental mammals mitigates maternal-fetal conflict. Cell 2012;150:29-38.
Toldi G, Rigo J, Stenczer B, Vásárhelyi B, et al. Increased prevalence of IL-17-producing peripheral blood lymphocytes in pre-eclampsia. Am J Reprod Immunol 2011;66:223-229.
Darmochwal D, Kludka M, Tabarkiewicz J, Kolarz B, et al. The predominance of Th17 lymphocytes and decreased number and function of Treg cells in preeclampsia. J Reprod Immunol 2012;93:75-81.
LeFevre ML. Low-dose aspirin use for the prevention of morbidity and mortality from preeclampsia: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med 2014;161:819-826.
Kably A. Adiós al Dr. López Llera. Ginecol Obstet Mex 2007;75:52
Zárate A. “Memory note” on Dr. Mario López Llera. Ginecol Obstet Mex 2007;75:30.
Moffett A, Colucci F. Uterine NK cells: active regulators at the maternal-fetal interface. J Clin Invest 2014;124:1872-1879.