2001, Número 2
El género Brucella y su interacción con el sistema mononuclear fagocítico
Aréstegui MB, Gualtieri SC, Domínguez J, Scharovsky OG
Idioma: Español/Inglés
Referencias bibliográficas: 60
Paginas: 131-139
Archivo PDF: 81.32 Kb.
RESUMEN
La resistencia inespecífica representa una parte esencial de la respuesta inmune del huésped. El sistema mononuclear fagocítico (SMF), que forma parte de los mecanismos efectores de la resistencia innata, está involucrado en numerosos eventos homeostáticos, inflamatorios e inmunológicos. Los fagocitos mononucleares (FMN), integrantes del SMF, tienen destacada participación en las principales funciones de los organismos multicelulares. Su interacción temprana con los patógenos determina el curso de la infección. Las bacterias que pueden resistir la muerte intracelular, sobrevivir y multiplicarse dentro de las células del SMF, son consideradas parásitos intracelulares. El género Brucella, que infecta al hombre y a diversas especies animales, es un patógeno intracelular. La mayoría de estos microorganismos tienen mecanismos especiales, genéticamente codificados, para invadir las células del huésped y sobrevivir dentro de ellas. En la presente revisión se describen las características del género Brucella haciendo especial referencia a su composición antigénica, a los factores de virulencia, así como a su estructura genómica y al control de la expresión génica. Se analizan tanto la interacción entre los FMN y Brucella spp, como los mecanismos efectores de los FMN, principalmente, generación de radicales de oxígeno y de nitrógeno, limitación de la disponibilidad de hierro y producción de citocinas. Se explica la participación de la inmunidad mediada por células en el control de la infección y el fenómeno de la resistencia natural a la brucelosis.
REFERENCIAS (EN ESTE ARTÍCULO)
1. Unanue E. Why Listeriosis? A perspective on cellular immunity to infection. Immunol Rev 1997;158:1-156.
2. Bullido R, Gomez de Moral M, Alonso F, Ezquerra A, Zapata A, Sanchez C, et al. Monoclonal antibodies specific for porcine monocytes/macrophages: macrophage heterogeneity in the pig evidenced by the expression of surface antigens. Tissue Antigens 1997;48:1-11.
3. Unanue ER. Macrophages, antigen-presenting cells, and the phenomena of antigen handling and presentation. In: Paul WE, editor. Fundamental immunology. 3rd ed. New York: Raven Press, 1993:111-144.
4. Fainboim L, Satz ML, Geffner J. Introducción a la inmunología humana. 4ª ed. Buenos Aires, Argentina: Talleres Gráfica Patricia, 1999:204-209.
5. Ugalde RA. Intracellular lifestyle of Brucella spp common genes with other animal pathogens, plant pathogenes and endosymbionts. Microbes Infect 1999;1:1211-1219.
6. Campbell G, Adams L. The long-term culture of bovine monocyte-derived macrophage and the use in the study of intracellular proliferation of Brucella abortus. Vet Immunol Immunopathol 1992;34:291-305.
7. Kaufmann S. Immunity to intracellular bacteria. Ann Rev Immunol 1993;2:129-163.
8. Adams G. Brucellosis: an overview. 1st International Conference on Emerging Zoonoses. Emerging Infect Dis 1997;3:1-12.
9. Lucero NE. Diagnóstico microbiológico y redes de laboratorio. II Congreso Argentino de Zoonosis y I Congreso Latinoamericano de Enfermedades Emergentes. Temas de Zoonosis y Enfermedades Emergentes; 1998 abril 13-17; Buenos Aires, Argentina. Buenos Aires, Argentina: Asociación Argentina de Zoonosis, Ideográfica, 1998:68-71.
Done S, Warathall A, Broughton E, Spencer S. Brucellosis in swine. Pig J 1998;41:54-64.
Kaufmann S. Immunity to intracellular microbial pathogens. Immunol Today 1995;16:338-342.
Doherty P, Kaufmann S. Immunity to infection. Novel insights and new models in a time of rapid technological change. Curr Opin Immunol 1994;6:515-517.
Daffner J, Scortti M. Revisión sobre brucelosis bovina. Antígenos solubles de utilización en pruebas serológicas para diagnóstico complementario. Therios 1995;24:276-287.
Oñate A. Proteínas totales de Brucella abortus cepa 19 y sus contaminantes. Arch Med Vet 1989;21:103-108.
Folch H, Oñate A. Propiedades mitogénicas y caracterización de diferentes fracciones polisacáridas obtenidas de dos especies de Brucella. Arch Med Vet 1995;37:85-92.
Pontow S, Kery V, Stahl D. Mannose receptor. Int Rev Cytol 1992;137:221-241.
Campbell GA, Adams LG, Sowa BA. Mechanisms of binding of Brucella abortus to mononuclear phagocytes from cows naturally resistant or susceptible to brucellosis. Vet Immunol Immunopathol 1994;41:295-306.
Bullido R, Alonso F, Gomez del Moral M, Ezquerra A, Alvarez B, Ortuño E, Dominguez J. Monoclonal antibody 2F4/11 recognizes the a chain of porcine b2 integrin involved in adhesion and complement mediated phagocytosis. J Immunol Methods 1996;195:125-134.
Alton GG. Brucella suis. In: Nielsen K, Duncan JR, editors. Animal brucellosis. Nepean, Canada: CRC Press, 1990:411-422.
Köler S, Teyssier J, Cloeckaert A, Rouot B, Liautard J. Participation of the molecular chaperone DnaK in intracellular growth of Brucella suis within U937-derived phagocytes. Mol Microbiol 1996;20:701-712.
Leonard B, Lopez-Goni I, Baldwin C. Brucella abortus siderophore 2,3-dihidroxybenzoic acid protects brucellae from killing by macrophages. Vet Res 1997;28:87-92.
Jumas-Bilak E, Michaux-Charachon S, Bourg G, O‘Callhagan D, Ramuz M. Differences in chromosome number and genome rearrangement in the genus Brucella. Mol Microbiol 1998;27:99-106.
Foulogne V, Bourg G, Cazevieille C, Michaux-Charachon S, O´Callaghan D. Identification of Brucella suis genes affecting intracellular survival in an in vitro human macrophage infection model by signature-tagged transposon mutagenesis. Infect Immun 2000;68:297-303.
Kaufmann S. Immunity to intracellular bacteria. In: Paul WE, editor. Fundamental immunology. 4th ed. Philadelphia: Lippincott-Raven Publishers, 1999:1335-1370.
Pearson A. Scavenger receptors in innate immunity. Curr Opin Immunol 1996;8:20-28.
Allen L, Aderem A. Mechanisms of phagocytosis. Curr Opin Immunol 1996;8:36-40.
Horwitz MA. Interactions between macrophages and Legionella pneumophila. Curr Top Microbiol Immunol 1998;181;265-283.
Rubel C, Marval P, Vermeulen M, Isturiz M, Palermo M. Lipopolysaccharide enhances FcgR-dependent functions in vivo through CD11b/CD18 up-regulation. Immunology 1999;97:429-437.
Ravetch J. Fc receptors. Curr Opin Immunol 1997;9:121-125.
Young E, Borchert M, Kretzer F, Musher D. Phagocytosis and killing of Brucella by human polymorphonuclear leukocytes. J Infect Dis 1985;151:682-690.
Liautard JP, Gross A, Dornand J, Köhler S. Interactions between professional phagocytes and Brucella spp. Microbiol Sem 1996;12:197-206.
Arestegui M, Gualtieri C, Delgado G, Perlo V, Scharovsky OG. Porcine phagocytic mononuclear system (PMS) activity in Brucella suis infected sows. Biocell 1999; 23:76.
Lopez-Urrutia L, Alonso A, Nieto M, Bayon Y, Orduna A, Sanchez-Crespo M. Lipopolysaccharides of Brucella abortus and Brucella melitensis induce nitric oxide synthesis in rat peritoneal macrophages. Infect Immun 2000;68:1740-45.
Gross A, Spiesser S, Terraza A, Rouot B, Emanuelle C, Dornand J. Expression and bactericidal activity of nitric oxide synthase in Brucella suis-infected murine macrophages. Infect Immun 1998;66:1309-1316.
Cooray R. Casein effects on myeloperoxidase–mediated oxygen-dependent bactericidal activity of bovine neutrophils. Vet Immunol Immunopathol 1996;51:55-65.
Jungi T, Adler H, Adler B, Thöny M, Krampe M, Peterhans E. Inducible nitric oxide synthase of macrophages. Present knowledge and evidence for species specific regulation. Vet Immunol Immunopathol 1996;54:323-330.
Lin QP, Frint K, Ward J, Correll PH. Negative regulation of macrophage activation in response to IFN-gamma and lipopolysaccharide by the STK/RON receptor tyrosyn kinase. J Immunol 1999;163:6606-6613.
Stevens M, Olsen S. In vitro effects of live and killed Brucella abortus on bovine cytokine and prostaglandin E2 production. Vet Immunol Immunopathol 1994;40:149-161.
Splitter G, Everlith K. Regulates bovine macrophage-T-cell interaction by major histocompatibility complex class II and interleukin-1 expression. Infect Immun 1989;57:1151-1157.
Splitter G, Oliveira S, Miller C, Ko J, Covert J. T lymphocyte mediated protection against facultative intracellular bacteria. Vet Immunol Immunopathol 1996;54:309-319.
Zhang L, Wang Ch. Induction of cytokine messenger RNA transcripts in mouse macrophages by Listeria monocytogenes, isolated from channel catfish. Am J Vet Res 1998;59:717-731.
Vazquez-Torres A. Macrophages in resistance to candidiasis. Microbiol Mol Biol Rev 1997;61:170-192.
Huang L, Krieg AM, Eller N, Scott D. Induction and regulation of Th1-inducing cytokines by bacterial DNA, lipopolysaccharide, and heat-inactivated bacteria. Infect Immun 1999;67:6257-6263.
Svetic A, Jian Y, Lu P, Finkelman F, Gause W. Brucella abortus induces a novel cytokine gene expression pattern characterized by elevated IL-10 and IFN- g in CD4 T cells. Int Immunol 1993;5:877-883.
Caron E, Gross A, Liautard JP, Dornand J. Brucella species release a specific, protease-sensitive, inhibitor of TNF-a expression, active on human macrophage-like cells. J Immunol 1996;156:2885-2893.
Caron E. Live Brucella spp fail to induce tumor necrosis factor a excretion upon infection of U 937 derived phagocytes. Infect Immunol 1994;62:5267-5274.
Gualtieri C, Aréstegui M, Perlo V, Samartino L, Duglovitzky D, Scharovsky O. Secreción de factor de necrosis tumoral-a (TNF-a) por células del sistema fagocítico mononuclear porcino infectado con Brucella suis. Memorias del II Congreso Argentino de Zoonosis y I Congreso Latinoamericano de Enfermedades Emergentes; 1998 abril 14-17; Buenos Aires, Argentina. Buenos Aires, Argentina: Asociación Argentina de Zoonosis, 1998:157.
Aréstegui M, Gualtieri C, Delgado G, Comba E, Scharovsky OG. Respuesta inmune a Brucella suis en porcinos. Actas del 4º Seminario Internacional de Ciencias Avícolas. Avícola 2000, Porcinos; 2000 mayo 10-12; Buenos Aires, Argentina. Buenos Aires, Argentina: Cámara Argentina de Productores Avícolas, CAPIA, 2000:s/f
Kantakamalakul W, Politis A, Marecki S, Sullivan T, Ozato K, Fenton M, Vogel S. Regulation of IFN consensus sequence binding protein expression in murine macrophages. J Immunol 1999;162:7417-7425.
Arestegui M, Gualtieri C, Comba E, Delgado G, Scharovsky OG. MNC bactericidal activity from pigs naturally infected with Brucella suis. Biocell 2000;24:185.
Qureshi T, Templeton J, Adams L. Intracellular survival of Brucella abortus, Mycobacterium bovis, BCG, Salmonella dublin, and Salmonella typhimurium in macrophages from cattle genetically resistant to Brucella abortus. Vet Immunol Immunopathol 1996;50:55-65.
Ho MH, Cheers C. Resistance and susceptibility of mice to bacterial infection. IV. Genetic and cellular basis of resistance to chronic infection with Brucella abortus. J Infect Dis 1982;146:381-387.
Adams G, Barthel R, Feng J, Qureshi T, Piedrahita J, Templeton J. Genes associated with innate killing of Brucella abortus and Mycobactyerium bovis by macrophages from genetically resistant cattle. Vet. Inmunol Inmunopatol 1996;54:135.
Templeton J, Feng J, Li Y, Quershi T, Izadjoo M, Adams G. Immunogenetics of innate resistance to brucellosis in ungulates. Vet Immunol Immunopathol 1996;54:255-262.
Zhang G, Wu H, Ross CR, Minton JE, Blech F. Cloning of porcine NRAMP1 and its induction by lipopoysaccharide, tumor necrosis factor alpha, and interleukin 1 beta: role of CD14 and mitogen activated protein kinases. Infect Immunol 2000;68:1886-1898.
Bellamy R. The natural resistance-associated macrophage protein and susceptibility to intracellular pathogenes. Microbes Infect 1999;1:23-27.
Gruenheid S, Gross P. Genetic susceptibility to intracellular infections: Nramp1, macrophage function and divalent cations transport. Curr Opin Microbiol 2000;3:43-48.
Kishi F, Yoshida T, Aiso S. Location of NRAMP1 molecule on the plasma membrane and its association with microtubules. Mol Immunol 1996;33:1241-1246.
Hackam DJ, Rotstein OD, Zhang W, Gruenheid S, Gross P, Grinstein S. Host resistance to intracellular infection: mutation of natural resistance-associated macrophage protein 1 (Nramp1) impairs phagosomal acidification. J Exp Med 1998;188:351-64.
Wajcicchowski W, De Sanctis J, Skamene E, Radziach D. Attenuation of MHC class II expression in macrophages infected with Mycobacterium bovis bacillus Calmette-Guerin involves class II transactivator and depends on the Nramp1 gene. J Immunol 1999;163:2688-2696.