2015, Número 3
Siguiente >>
Medicentro 2015; 19 (3)
Ácidos grasos omega-6 y omega-3 de la dieta y carcinogénesis mamaria: bases moleculares y celulares
Guirado BO
Idioma: Español
Referencias bibliográficas: 43
Paginas: 132-141
Archivo PDF: 447.95 Kb.
RESUMEN
Los lípidos polinsaturados omega-6 y omega-3 constituyen componentes esenciales de la dieta.
Los patrones dietéticos con elevado consumo en omega-6 se han asociado con un mayor riesgo de
cáncer de mama. La ingesta de omega-3 parece tener un efecto protector al estar involucrado en
mecanismos biológicos que favorecen la inhibición de la carcinogénesis mamaria. Los ácidos
grasos omega-6 pueden actuar como inhibidores competitivos de los omega-3 en el metabolismo
lipídico y, de esta forma, podrían inhibir los efectos antinflamatorios y citoprotectores de los omega-
3. Dicha hipótesis indicaría la importancia de mantener una razón n-3/n-6 adecuada para la
prevención del cáncer de mama. Este hecho contrasta con el elevado consumo de ácidos grasos
polinsaturados omega-6 en los países occidentales. Actualmente, la evidencia científica acumulada
es suficiente para proponer políticas públicas en relación con el consumo y tipo de lípidos
presentes en la dieta para disminuir el riesgo de cáncer de mama.
REFERENCIAS (EN ESTE ARTÍCULO)
Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA: Cancer J Clin [internet]. 2013 Jan.-Feb. [citado 2 feb. 2015];63(1):[aprox. 20 p.]. Disponible en: http://onlinelibrary.wiley.com/doi/10.3322/caac.21166/full
de Lorgeril M, Salen P. Helping women to good health: breast cancer, omega-3/omega-6 lipids, and related lifestyle factors. BMC Med. 2014;12(1):54.
Castelló A, Buijsse B, Ruiz A, Casas AM, Baena-Cañada JM, Lope V. A, et al. La dieta Mediterránea y otros patrones dietéticos y riesgo de cáncer de mama: estudio EpiGEICAM de casos y controles Br J Cancer. 2014;111(7):1454-62.
Gerber M. n-3 fatty acids and cancers: a systematic update review of epidemiological studies. Br J Nutr. 2012;107(Suppl. 2):S228-39.
Schatzkin A, Subar AF, Moore S, Park Y, Potischman N, Thompson FE, et al. Observational epidemiologic studies of nutrition and cancer: The next generation (with better observation). Cancer Epidemiol Biomarkers Prev. 2009;18(4):1026-32.
Thiébaut AC, Kipnis V, Schatzkin A, Freedman LS. The role of dietary measurement error in investigating the hypothesized link between dietary fat intake and breast cancer: a story with twists and turns. Cancer Invest [internet]. 2008 [citado 5 mar. 2015];26(1):[aprox. 6 p.]. Disponible en: http://informahealthcare.com/doi/abs/10.1080/07357900701527918
Natarajan L, Pu M, Fan J, Levine RA, Patterson RE, Thomson CA, et al. Measurement error of dietary self-report in intervention trials. Am J Epidemiol [internet]. 2010 [citado 8 feb. 2015];172(7):[aprox. 9 p.]. Disponible en: http://aje.oxfordjournals.org/content/172/7/819.full
Khodarahmi M, Azadbakht L. The association between different kinds of fat intake and breast cancer risk in women. Int J Prev Med [internet]. 2014 [citado 22 feb. 2015];5(1):[aprox. 10 p.]. Disponible en: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3915474/
Escrich E, Solanas M, Moral R. Olive oil and other dietary lipids in breast cancer. Cancer Treat Res. 2014;159:289-309.
Solanas M, Moral R, Colomer R, Escrich E. Effects of dietary (n-6) polyunsaturated lipids on experimental mammary carcinogenesis. J Women’s Cancer. 2000;2:67-72.
Alexander DD, Morimoto LM, Mink PJ, Lowe KA. Summary and meta-analysis of prospective studies of animal fat intake and breast cancer. Nutr Res Rev [internet]. 2010 Jun. [citado 26 mar. 2015];23(1):[aprox. 10 p.]. Disponible en: http://journals.cambridge.org/action/displayFulltext?type=6&fid=7828561&jid=NRR&volumeId=2 3&issueId=01&aid=7828560&bodyId=&membershipNumber=&societyETOCSession=&fulltextT ype=RV&fileId=S095442241000003X
Escrich E, Solanas M, Moral R, Escrich R. Modulatory effects and molecular mechanisms of olive oil and other dietary lipids in breast cancer. Curr Pharm Des [internet]. 2011 Mar. [citado 5 mar. 2015]; 17(8):[aprox. 18 p.]. Disponible en: http://www.ingentaconnect.com/content/ben/cpd/2011/00000017/00000008/art00007
Pouchieu C, Chajès V, Laporte F, Kesse-Guyot E, Galan P, Hercberg S, et al. Prospective Associations between Plasma Saturated, Monounsaturated and Polyunsaturated Fatty Acids and Overall and Breast Cancer Risk–Modulation by Antioxidants: A Nested Case-Control Study. PloS one. 2014;9(2):e904-42.
Azrad M, Turgeon C, Demark-Wahnefried W. Current evidence linking polyunsaturated fatty acids with cancer risk and progression. Front Oncol [internet]. 2013 sep. 4 [citado 10 feb. 2015];3:[aprox. 12 p.]. Disponible en: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3761560/
MacLennan M, WL Ma D. Role of dietary fatty accids in mammary gland development and breast cancer. Breast Cancer Res [internet]. 2010 [citado 8 feb. 2015];12:[aprox. 10 p.]. Disponible en: http://www.biomedcentral.com/content/pdf/bcr2646.pdf
Fabian JC, Kimler FB. Marine-derived omega-3 fatty acids: Fishing for clues for cancer prevention. Am Soc Clin Oncol Educ Book. 2013:97-101.
Stephenson JA, Al-Taan O, Arshad A, Morgan B, Metcalfe MS, Dennison AR. The multifaceted effects of omega-3 polyunsaturated fatty acids on the Hallmarks of Cancer. J Lipids [internet]. 2013 [citado 27 mar. 2015];2013:[aprox. 13 p.]. Disponible en: http://www.hindawi.com/journals/jl/2013/261247/
Corsetto PA, Montorfano G, Zava S, Jovenitti IE, Cremona A, Berra B, et al. Effects of n-3 PUFAs on breast cancer cells through their incorporation in plasma membrane. Lipids Health Dis [internet]. 2011 [citado 12 feb. 2015];10:[aprox. 16 p.]. Disponible en: http://www.biomedcentral.com/content/pdf/1476-511X-10-73.pdf
Comba A, Maestri DM, Berra MA, García CP, Das UN, Eynard AR, et al. Effect of ω-3 and ω-9 fatty acid rich oils on lipoxygenases and cyclooxygenases enzymes and on the growth of a mammary adenocarcinoma model. Lipids Health Dis [internet]. 2010 [citado 10 ene. 2015];9:[aprox. 8 p.]. Disponible en: http://www.biomedcentral.com/1476-511X/9/112
Comba A, Lin YH, Eynard AR, Valentich MA, Fernandez-Zapico ME, Pasqualini ME. Basic aspects of tumor cell fatty acid-regulated signaling and transcription factors. Cancer Metastasis Rev [internet]. 2011 Nov. 3 [citado 20 ene. 2015];30(3-4):[aprox. 18 p.]. Disponible en: http://link.springer.com/article/10.1007/s10555-011-9308-x/fulltext.html
Fritz V, Fajas L. Metabolism and proliferation share common regulatory pathways in cancer cells. Oncogene [internet]. 2010 May 31 [citado 20 ene. 2015];29:[aprox. 9 p.]. Disponible en: http://www.nature.com/onc/journal/v29/n31/full/onc2010182a.html
Calder PC. Mechanisms of Action of (n-3) Fatty Acids. J Nutr [internet]. 2012 Jan. 25 [citado 30 ene. 2015];142(3):[aprox. 8 p.]. Disponible en: http://jn.nutrition.org/content/142/3/592S.full.pdf+html
Patterson WL, Georgel PT. Breaking the cycle: the role of omega-3 polyunsaturated fatty acids in inflammation-driven cancers. Biochem Cell Biol [internet]. 2014 Jul. 8 [citado 21 feb. 2015];92(5):[aprox. 8 p.]. Disponible en: http://www.nrcresearchpress.com/doi/full/10.1139/bcb- 2013-0127
To SQ, Takagi K, Miki Y, Suzuki K, Abe E, Yang Y, et al. Epigenetic mechanisms regulate the prostaglandin E receptor 2 in breast cancer. J Steroid Biochem Mol Biol [internet]. 2012 Nov. [citado 20 ene. 2015]; 132(3-5):[aprox. 8 p.]. Disponible en: http://www.sciencedirect.com/science/article/pii/S0960076012001446
Burdge GC, Lillycrop KA. Fatty acids and epigenetics. Curr Opin Clin Nutr Metab Care [internet]. 2014 Mar. [citado 20 ene. 2015];17(2):[aprox. 6 p.]. Disponible en: http://journals.lww.com/coclinicalnutrition/ Abstract/2014/03000/Fatty_acids_and_epigenetics.9.aspx
Wendel M, Heller AR. Anticancer actions of omega-3 fatty acids: current state and future perspectives. Anticancer Agents Med Chem [internet]. 2009 May [citado 15 ene. 2015];9(4):[aprox. 14 p.]. Disponible en: http://www.ingentaconnect.com/content/ben/acamc/2009/00000009/00000004/art00007
Maskrey BH, Megson IL, Rossi AG, Whitfield PD. Emerging importance of omega-3 fatty acids in the innate immune response: molecular mechanisms and lipidomic strategies for their analysis. Mol Nutr Food Res. 2013;57(8):1390-400.
Sun H, Hu Y, Gu Z, Owens RT, Chen YQ, Edwards IJ. Omega-3 fatty acids induce apoptosis in human breast cancer cells and mouse mammary tissue through syndecan-1 inhibition of the MEK-Erk pathway. Carcinogenesis. 2011;32(10):1518-24.
Chénais B, Blanckaert V. The janus face of lipids in human breast cancer: how polyunsaturated Fatty acids affect tumor cell hallmarks. Int J Breast Cancer. 2012;2012:7125-36.
Chang NW, Chen-Teng W, Dar-Ren C, Chung-Yi Y, Chingiu L. High levels of arachidonic acid and peroxisome proliferator-activated receptor-alpha in breast cancer tissues are associated with promoting cancer cell proliferation. J Nutr Biochem [internet]. 2013 Jan. [citado 19 ene. 2015];24(1):[aprox. 8 p.]. Disponible en: http://www.sciencedirect.com/science/article/pii/S095528631200160X
Kotta-Loizou I, Giaginis C, Theocharis S. The role of peroxisome proliferator-activated receptor- γ in breast cancer. Anticancer Agents Med Chem. 2012;12(9):1025-44.
Avena P, Anselmo W, Whitaker-Menezes D, Wang C, Pestell RG, Lamb RS, et al. Compartment-specific activation of PPARγ governs breast cancer tumor growth, via metabolic reprogramming and simbiosis. Cell Cycle. 2013;12(9):1360-70.
Barrera G. Oxidative stress and lipid peroxidation products in cancer progression and therapy. ISRN Oncol [internet]. 2012 [citado 10 ene. 2015];2012:[aprox. 21 p.]. Disponible en: http://www.hindawi.com/journals/isrn/2012/137289/?viewType=Print&viewClass=Print
Manni A, Richie JP Jr, Xu H, Washington S, Aliaga C, Cooper TK, et al. Effects of fish oil and Tamoxifen on preneoplastic lesion development and biomarkers of oxidative stress in the early stages of N-methyl-N-nitrosourea-induced rat mammary carcinogenesis. Int J Oncol. 2011;39(5):1153-64.
Schley PD, Brindley DN, Field CJ. (n-3) PUFA alter raft lipid composition and decrease epidermal growth factor receptor levels in lipids rafts of human breast cancer cells. J Nutr [internet]. 2007 Mar. [citado 2 feb. 2015];137(3):[aprox. 6 p.]. Disponible en: http://jn.nutrition.org/content/137/3/548.full
Altenburg JD, Siddiqui RA. Omega-3 polyunsaturated fatty acids down-modulate CXCR4 expression and function in MDA-MB-231 breast cancer cells. Mol Cancer Res [internet]. 2009 Jun. 30 [citado 2 feb. 2015];7(7):[aprox. 8 p.]. Disponible en: http://mcr.aacrjournals.org/content/7/7/1013.full
Manni A, Xu H, Washington S. The impact of fish oil on the chemopreventive efficacy of tamoxifen against development of N-methyl-N-nitrosourea-induced rat mammary carcinogenesis. Cancer Prev Res. 2010;3:322-30.
Iyengar NM, Hudis CA, Gucalp A. Omega-3 fatty acids for the prevention of breast cancer: an update and state of the science. Curr Breast Cancer Rep. 2013;5(3):247-54.
Chen Z. mTORC1/2 targeted by n-3 polyunsaturated fatty acids in the prevention of mammary tumorigenesis and tumor progression. Oncogene. 2014;33(37):4548-57.
Siddiqui RA, Harvey KA, Xu Z, Bammerlin EM, Walker C, Altenburg JD. Docosahexaenoic acid: a natural powerfull adjuvant that improves efficacy for anticancer treatment with no adverse effects. Biofactors. 2011;37(6):399-412.
Serna-Marquez N, Villegas-Comonfort S, Galindo-Hernandez O, Navarro-Tito N, Millan A, Salazar EP. Role of LOXs and COX-2 on FAK activation and cell migration induced by linoleic acid in MDA-MB-231 breast cancer cells. Cell Oncol (Dordr). 2013;36(1):65-77.
Costa I, Moral R, Solanas M, Andreu FJ, Ruiz de Villa MC, Escrich E. High corn oil and extra virgin olive oil diets and experimental mammary carcinogenesis: clinicopathological and immunohistochemical p21 Ha-Ras expression study. Virchows Arch. 2011;458(2):141-51.
Guirado Blanco O. Efecto de la dieta con alto contenido en aceite de maíz sobre el grado de malignidad morfológica y la expresión de p21 Ha-Ras en la carcinogénesis mamaria experimental [tesis]. Santa Clara: Universidad de Ciencias Médicas; 2014.