2015, Número 1
<< Anterior Siguiente >>
Rev Biomed 2015; 26 (1)
Aceite de trementina modificado: un inhibidor de enzimas detoxificadoras en dos cepas de Aedes aegypti
Leyva M, French L, Marquetti MC, Montada D, Castex M, Tiomno O, Tacoronte JE
Idioma: Español
Referencias bibliográficas: 61
Paginas: 13-22
Archivo PDF: 293.27 Kb.
RESUMEN
Introducción. Los principales mecanismos
de resistencia a los insecticidas desarrollados
por los insectos incluyen una serie de enzimas
detoxificadoras. Se conoce que estos mecanismos pudieran afectar la efectividad en la actividad
insecticida de algunos aceites esenciales. Estudiar
la implicación de las enzimas detoxificadoras es importante cuando se pretende recomendar un
aceite esencial para el control vectorial.
Objetivo. Determinar la actividad de las enzimas de acción metabólica en dos cepas de
Ae. aegypti (susceptible y resistente a insecticidas) al ser expuestas a sus respectivas CL
90 de un aceite
de trementina obtenido de
Pinus tropicalis y
modificado por fotoisomerización.
Resultados. Los valores de actividad de las
β-esterasa y MFO oxidasa no variaron en la cepa
susceptible; sin embargo, en la cepa resistente ocurrió una disminución de los valores de estas actividades. La actividad de las GST mostró
inhibición en la cepa susceptible, mientras que,
para la cepa resistente se encontró un ligero
incremento.
Conclusiones. En este trabajo se pudo demostrar
que las enzimas de acción metabólica evaluadas
no constituyen un mecanismo de resistencia en
las larvas que sobrevivieron a la exposición del
aceite de trementina modificado. Este resultado,
unido a los efectos biológicos de este aceite, así como su actividad ovicida, larvicida, pupicida y
teratogénica, permite recomendar su uso como
un método alternativo para el control de
Aedes
aegypti.
REFERENCIAS (EN ESTE ARTÍCULO)
WHO Impact of dengue. Global alert and response (GAR)2012a. http://www.who.int/csr/disease/dengue/ impact/en/index.html.
WHO Global strategy for dengue prevention and control 2012–2020. 2012b WHO, Geneva.
WHO Dengue and severe dengue. Factsheet no.117.2012c http://www.who.int/mediacentre / factsheets/fs117/en/.
Bisset JA, Rodriguez MM, Ricardo Y, Ranson H, Perez O, Moya M, et al. Temephos resistance and esterase activity in the mosquito Aedes aegypti in Havana, Cuba increased dramatically between 2006 and 2008. J Med Vet Entomol 2011;25: 233-9.
Ryan MF, Byrne O. Plant-insect coevolution and inhibition of acetylcholinesterase. J Chem Ecol 1988;14:1965–75
Wadley L, Stevers Ch, Bamford Goldeberg P, Berna F y Miller Christopher. Middle slone age bedding construction and settlement patterns of Sibudu South Africa. Sience 2011; 334(6061):1386-1391.
Tikar SN, Kumar A, Prasad GB, Prakash S. Temephos-induced resistance in Aedes aegypti and its cross-resistance studies to certain insecticides from India. Parasitol Research 2009;105(1):57-63.
Melo-Santos MAV, Varjal-Melo JJM, Araújo AP, Gomesa TCS, Paiva MHS, Regis LN,et al . Resistance to the organophosphate temephos: Mechanisms, evolution and reversion in an Aedes aegypti laboratory strain from Brazil. Acta Tropica 2010;113:180–189.
Rodríguez MM, Bisset JA, Pérez O, Montada D, Moya et al.Estado de la resistencia a insecticidas y sus mecanismos en Aedes aegypti en el municipio Boyeros. Rev Cubana Med Trop 2009;61(2): 187-198.
Rodríguez MM, Bisset JA, RicardoY, Pérez O, Montada D, Figueredo D et al. Resistencia a insecticidas organofosforados en Aedes aegypti (Diptera: Culicidae) de Santiago de Cuba, 1997-2009. Rev Cubana Med Trop 2010; 62(3):217-23.
Phasomkusolsil S, Soonwera M. Potential larvicidal and pupacidal activities of herbal essential oils against Culex quinquefasciatus Say and Anopheles minimus (Theobald).Southeast Asian J Trop Med Public Health 2010; 41(6):1342-51.
Chung IM, Song HK, Yeo MA, Moon HI. Composition and immunotoxicity activity of major essential oils from stems of Allium victorialis L. var. platyphyllum Makino against Aedes aegypti L. Immunopharmacol 2011; 33(3):480-83.
Hafeez F, Akram W, Shaalan EA. Mosquito larvicidal activity of citrus limonoids against Aedes albopictus. Parasitol Res. 2011; 109 (1):221-229.
Mathew J, Thoppil JE. Chemical composition and mosquito larvicidal activities of Salvia essential oils. Pharm Biol 2009; 49(5):456-463.
Pitarokili D, Michaelakis A, Koliopoulos G, Giatropoulos A, Tzakou O.Chemical composition, larvicidal evaluation, and adult repellency of endemic Greek Thymus essential oils against the mosquito vector of West Nile virus. Parasitol Res 2011; 109(2):425-430.
De Lima Santos ND, Santana K, Napoleao TH, Novais Santos G, Breitenbach LC,Do Amaral DM et al Oviposition stimulant and ovicidal activities of Moringa oleifera lectin on Aedes aegypti Plos One 2013: 7(9): e44840.doi:10.1371/journal.pone.0044840.
Tong F ,Bloomquist J Plant essential oils affect toxicities of carbaryl and permethrin against Aedes egypti (Diptera : Culicidae). J Med Entomol 2013; 50 (4):826-832.
Noleto Dias C, Fernandes D.Essential oils and their compounds as Aedes aegypti L. (Diptera: Culicidae) larvicides: review Parasitol Res 2013 DOI 10.1007/ s00436-013-3687-6
Roig JT. Diccionario botánico de nombres vulgares cubanos. Tercera Edición Editora del Consejo Nacional de Universidades, La Habana, Cuba. 1965:1142pp
Pino O, Sánchez Y, Rodríguez H, Correa TM, Demedio J, Sanabria JL. Caracterización química y actividad acaricida del aceite esencial de Piper aduncum subsp. ossanum frente a Varroa destructor. Prot Vegetal 2011; 26 (1):
Pino O, Sánchez Y, Rojas MM, Rodríguez H, Abreu Y et al, Composición química y actividad plaguicida del aceite esencial de Melaleuca quinquenervia (Cav) S.T. Blake . Prot Vegetal 2011; 26(3)
Leyva M, Marquetti MC, Tacoronte JÁ, Tiomno O, Montada D. Efecto inhibidor del aceite de trementina sobre el desarrollo de larvas de Aedes aegypti (Diptera: Culicidae) Rev Cubana Med Trop 2010;62(3):212-16.
Leyva M, Tiomno O, Tacoronte JE, Marquetti MC, Montada D. Essential Plant Oils and Insecticidal Activity in Culex quinquefasciatus 2012 Insecticides – Pest Engineering ISBN 978-953-307-895-3 Ed Intech. 221-238pp
Leyva M, Castex M, Montada D, Quintana D, Lezcano D, et al. Actividad repelente de formulaciones del aceite esencial de Melaleuca quinquenervia (Cav.) S.T. Blake (Myrtales:Myrtaceae) en mosquitos. Anales de Biología 2012; 34: 47-56.
Leyva M, Marquetti MC, French L, Montada D,Tiomno O ,Tacoronte JE. Efecto de un aceite de trementina obtenido de Pinus tropicalis Morelet 1851 sobre la biología de una cepa de Aedes (Stegomyia) aegypti Linnaeus 1762 resistente a insecticidas. Anales de Biología 2013;35: 75-88.
Hemingway J H, Mccarroll L, Ranson R. The molecular basis of insecticide resistance in mosquitoes. Insect Bioch Molecular Biology 2004:34: 653–665.
Li X, Schuler M, Berenbaum MR. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu Rev Entomol 2007; 52:231- 53.
Ranson H , Hemingway J. Insect pharmacology and control: glutathione S-transferases, Oxford, 2004 UK, Elsevier.
OMS. Instrucciones para determinar la susceptibilidad o resistencia a insecticidas en larvas de mosquito. WHO/VBC/81.807
Mazarri MB, Georghiou GP. Characterization of resistance to orgaphosphate, carbamate and pyrethroid insecticides in field populations of Aedes aegypti from Venezuela. J Am Mosq Control Assoc 1995; 11:315-22.
Dhiman S, Rabha B, Yadav K, Baruah I, Veer V .Insecticide susceptibility and dengue vector status of wild Stegomyia albopicta in a strategically important area of Assam, India. Parasit Vectors 2014; 7: 295. Published online Jul 1, 2014.
Brogdon WG, Mcallister JC. Insecticide resistance and vector control. Emerg Infect Dis. 1998;4, 605-13.
French L, Rodríguez MM, Bisset JA, Ricardo Y, Gutiérrez G, Fuentes I. Actividad incrementada de las enzimas citocromo P450 monooxigenasas en cepas cubanas de Aedes aegypti de referencia, resistentes a insecticidas. Rev Cubana Med Trop 2013; 65(3): 328-338.
Rodríguez M, Bisset J, Díaz C, Soca A. Adaptación de los métodos en placas de microtitulación para la cuantificación de la actividad de esterasas y glutation- s-transferasa en Aedes aegypti. Rev Cubana Med Trop 2001;53(1): 32-6.
Larson RT, Lorch JM, Pridgeon JW, Becnel JJ, Clarck GG, Lan Q. The biological activity of α-mangostin, a larvicidal botanic mosquito sterol carrier protein-2 inhibitor. J Med Entomol 2010; 47:249–257.
Tripathy A, Samanta L, Sachidananda D, Parida S, Marai N et al. The mosquitocidal activity of methanolic extracts of Lantana camara Root and anacardium occidentalle leaf: role of GST in insecticidal resistance. J Med Entomology 2011; 48(2):291-295.
Cordeiro Agra-Neto A, Henrique Napoleão T , Viana Pontual E, Diniz de Lima Santos N , Andrade Luz L, Fontes de Oliveira CM, et al. Effect of Moringa oleifera lectins on survival and enzyme activities of Aedes aegypti larvae susceptible and resistant to organophosphate. Parasitol Res 2013 DOI 10.1007/ s00436-013-3640-8.
Montada D, Leyva M, Silva Y, Marquetti MC. Susceptibilidad de 3 cepas de Aedes aegypti asociada con la aplicación de 3 insecticidas. Rev Cubana Med Trop 2009;61(2):199-209.
French L. Estudio de la resistencia a insecticidas en los estadios de larva y adulto de Aedes aegypti (Diptera: Culicidae) Tesis para optar por el grado de Master en Entomología medica y Control de Vectores 2012. Instituto de Medicina Tropical “Pedro Kourí” Cuba.
Hemingway J, Georghiou GP. Studies on the acetylcholinesterase of Anopheles albimanus resistant and susceptible to organophosphate and carbamate insecticides. Pestic Biochem Physiol 1983; 19:167–171.
Rodriguez M. Estudio de la resistencia a insecticidas. Tesis doctoral. Instituto de Medicina Tropical Pedro Kouri 2008. 114 p
Castex M, Montada D, González I, Estevez S, San Blas O, González R. Efectividad del tratamiento residual (Perifocal) con Ficam (Bendiocarb) 80 WP en el control del mosquito Aedes aegypti en el Área de Salud XX Aniversario A, en Santa Clara. Cuba. Rev Cubana Med Trop 2008; 60(1):61 -62.
Seau-Rong L, Tan-Wei-Ann A, Wasi-Ahmad N, Ham-Lim L, Sofian-Azirum M. Insecticidal susceptibility status of field collected Aedes (Stegomya) aegypti (L) at dengue endemic site in Sham Alam Selengor Malasya . Southeast Asian J Tropical Med Public Health 2012;43(1):34-47.
Schuler MA. The role of cytochrome 450 monooxygenases in plant insect interactions. Plant Physiology 1996;112: 1411-19.
Ortego F, Lopez-Olguin JF, Ruiz M, Castanera P. Effect of toxic and deterrent terpenoids on digestive proteases and detoxication enzyme activities of Colarado potato beetle larvae. Pest Biochem Physiol 1999; 63: 76-84.
Rattan RS. Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Protection 2010:29 913-20.
Lassiter MT ,Apperson CS, Roe RM. Juvenile hormone metabolism during the fourth stadium and pupal stage of the southern house mosquitoes Culex quinquefasciatus Say. J Insect Physiol 1995; 41: 869- 876.
Shanmugavelu M, Baytan AR,Chesnut SJ,Bonning BC. A novel protein that bindsjuvenile hormone esterase in fat body tissues and pericardial cells of the tobacco horn worm Manduca sexta L . J Biol Chem 2000; 275 :1802-06.
Koodalingam A, Mullainadhan P, Arumugam M. Effects of extract of soapnut Sapindus emarginatus on esterases and phosphatases of the vector mosquito Aedes aegypti (Diptera Culicidae). Acta Tropica 2011;118: 27-36.
Joffe T, Gunning RV, Allen GR, Kristensen M, Alptekin S, Field LM et al. Investigating the potential of selected natural compounds to increase the potency of pyrethrum against houseflies Musca domestica (Diptera: Muscidae). Pest Manag Sci 2012, 68:178–184.
Vontas JG, Small GJ, Hemingway J. Glutathione S-transferases as antioxidant defence agents confer pyrethroid resistance in Nilaparvata lugens. Biochem J 2001;357: 65-72.
Zelck UE, Janowsky V B. Antioxidant enzymes in intramolluscan Schistosoma mansoni and ROS-induced changes in expression. Parasitology 2004; 128: 493- 501.
Tripathy A, Samanta L, Sachidananda D, Parida S, Marai n, Hazra RK, et al .The mosquitocidal activity of methanolic extracts of Lantana camara Root and Anacardium occidentalle leaf: role of GST in insecticidal resistance. J Med Entomol 2011;48(2):291- 295.
Macedo MLR, Freire MGM, Silva MBR, Coelho LCBB. Insecticidal action of Bauhinia monandra leaf lectin (BmoLL) against Anagasta kuehniella (Lepidoptera: Pyralidae), Zabrotes subfasciatus, and Callosobruchus maculatus (Coleoptera: Bruchidae). Comp Biochem Physiol A 2007; 146:486–498
Babu SR, Subrahmanyam B. Bio-potency of serine proteinase inhibitors from Acacia senegal seeds on digestive proteinases, larval growth, and development of Helicoverpa armigera (Hübner). Pest Biochem Physiol 2010; 98:349–358.
Napoleão TH, Pontual EV, Lima TA, Santos NDL, Sá RA, Coelho LCBB, et al. Effect of Myracrodruon urundeuva leaf lectin on survival and digestive enzymes of Aedes aegypti larvae. Parasitol Res 2012;110:609– 616.
IRAC 2012 Web site at www.irac-online.org. visited date March5th, 2012
Blenau W, Rademacher E, Baumann A. Plant essential oils and formamidines as insecticides/ acaricides: what are the molecular targets?. Apidologie 2012, 43:334–47.
Tong F ,Coats JR. Effects of monoterpenoid insecticides on [3H]-TBOB binding in house fly GABA receptor and 36Cl− uptake in American cockroach ventral nerve cord. Pest Biochem. Physiol 2010;98, 317–324.
Yadav S, Mittal PK, Saxena PN, Singh RK. Effect of synergist piperonyl butoxide (PBO) on the toxicity of some essential oils against mosquito larvae. J Commun Dis 2009; 41:33–38.
Waliwitiya R, Nicholson RA, Kennedy CJ, Lowenberger CA The synergistic effects of insecticidal essential oils and piperonyl butoxide on biotransformational enzyme activities in Aedes aegypti (Diptera: Culicidae). J Med Entomol 2012; 49:614–623.