2001, Número 1
<< Anterior Siguiente >>
Rev Mex Patol Clin Med Lab 2001; 48 (1)
Citocinas en médula ósea de pacientes con linfoma no Hodgkin. Estudio por RT-PCR y revisión de la literatura
Muñoz HN, Aguilar LDE, Martínez-Cordero E, Labardini MJ
Idioma: Español
Referencias bibliográficas: 57
Paginas: 27-36
Archivo PDF: 130.84 Kb.
RESUMEN
El conocimiento de las interacciones que se llevan a cabo entre los precursores y progenitores sanguíneos con los componentes estromales y los factores solubles en la médula ósea (MO), ha sido la base para estudiar la existencia de anormalidades específicas en el microambiente hematopoyético. En neoplasias hematológicas como el linfoma no Hodgkin (LNH) se desconoce si existen anormalidades en cuanto a la producción de citocinas en la MO y si éstas pueden afectar el desarrollo de los progenitores linfoides predisponiéndolos a la neoplasia. Mediante el empleo de retrotranscripción y la reacción en cadena de la polimerasa (RT-PCR) se estudió la expresión de citocinas supresoras de la hematopoyesis como interleucina-10 (IL-10), factor de necrosis tumoral a (TNF-a) e interferon g (IFN-g) en aspirados de MO de 20 pacientes con LNH sin tratamiento previo. El grupo testigo incluyó 19 individuos clínicamente sanos pertenecientes al programa de trasplante de MO. También se determinó la expresión de TGF-b en 15 pacientes y 15 testigos mediante la misma técnica. La extracción de ARN se realizó con el método de isotiocianato de guanidina y el ADNc fue obtenido por retrotranscripción. La amplificación por PCR se realizó con Taq ADN-polimerasa y oligonucleótidos específicos para cada citocina y b-actina empleada como testigo interno de la síntesis de ADNc. El análisis estadístico se realizó mediante la prueba exacta de Fisher. Se encontró una disminución en la expresión de TNF-a (p= 0.001) y TGF-b (p= 0.001) en LNH comparado con el grupo testigo. En cambio, no se observó una diferencia significativa en la presencia de IL-10 e IFN-g entre ambos grupos. Los resultados obtenidos sugieren una expresión anormal de citocinas inhibitorias en la MO, lo que podría conducir a: 1) defectos en la diferenciación y desarrollo anormal de las células progenitoras, 2) un desbalance de los mecanismos hematopoyéticos que regulan el crecimiento celular y 3) escape de las células anormales a la apoptosis, favoreciendo la transformación neoplásica de las células linfoides y sus progenitores en linfoma no Hodgkin.
REFERENCIAS (EN ESTE ARTÍCULO)
Ruiz AGJ. Fundamentos de hematología. México. Editorial Médica Panamericana; 1993: 15-23.
Richard G, Bithell C, Wintrobe’s T. Clinical Hematology. 9ª edición. USA. Lea and Febiger; 1993: 1: 48-62.
Bautler E, Lichtman A, Caller S, Kipps J, Williams J. Hematology. Chapter 22. 5ª edición. USA. McGraw-Hill; 1995: 211-228.
Testa GN, Lord BI, Dexter MT. Hematopoietic lineages in health and disease. Chapter 1 and 2. USA. Marcel Deker; 1997: 1-45.
Tavassoli M, Fredenstein A. Hematopoietic stromal microen-viroment. Am J Hematol 1983; 15: 195.
Cluitmans M, Esendam J, Landegent E, Willemze R, Falkenburg F. Constitutive in vivo cytokine and hematopoietic growth factor gene expression in the marrow and peripheral blood of healthy individuals. Blood 1995; 85: 2038.
Paul S, Bennett F, Calvetti J, Kelleher K, Wood C, O’Hara R, Leary A, Sibley B, Clarck S, William D, Yang Y. Molecular cloning of a cDNA encoding interleukin-11, a stromal cell-derived lymphopoietic and hematopoietic cytokine. Proc Natl Acad Sci USA 1990; 87: 7512.
Mrózek E, Anderson P, Caligiuri A. Role of interleukin 15 in the development of human CD56+ natural killer cells from CD34+ hematopoietic progenitor cells. Blood 1996; 87: 2632.
Fossiez F, Djossou O, Chomarat P, Flores-Romo L, Ait-Yahio S, Maat C, Pin J-J, Garrone P, García E, Saeland S, Blanchard D, Gaillard C, Mahopatra D, Rouvier E, Golstein P, Banchereau J, Lebecque S. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J Exp Med 1996; 183: 2593.
Abbas KA, Lichtman HA, Pober SJ. Cellular and molecular immunology. 2ª edición. USA. Saunders Company; 1994: 268-292.
James H. Blood cell formation. Chapter 1. 3ª edición. USA. Bacrweell Scientific Publications; 1993: 7-22.
Ogawa M. Differentiation and proliferation of hematopoietic stem cells. Blood 1993; 81: 2844.
Metcalf D. Hematopoietic regulators: redundancy or subtlety? Blood 1993; 82: 3523.
García T. Fundamentos de inmunobiología. México. UNAM; 1997: 349-393.
Moore S. Clinical implications of positive and negative hematopoietic stem cell regulators. Blood 1991; 78: 1.
Horst I. Dictionary of cytokines. Editorial VCH Verlagsgesellschaft mbH. Germany 1995: 313-321.
Leary A, Zeng H, Clarck S, Ogawa M. Growth factor requirements for survival in Go and entry into the cycle of primitive human hematopoietic progenitors. Proc Natl Acad Sci USA 1992; 89: 4013.
Dührsen U, Knieling G, Beecken W, Neumann S, Hossfeld K. Chimaeric cultures of human marrow stroma and murine leukemia cells: evidence for abnormalities in the haemopoietic microenviroment in myeloid malignancies and other infiltrating marrow disorders. Brit J Haematol 1995; 90: 502.
Jiménez-Zepeda V, Jiménez-Zepeda R. Linfoma no Hodgkin: clasificación biológica, diagnóstico y tratamiento. Gaceta Médica de México 1998; 134: 443.
World Medical Association: Declaration of Helsinki. Recommendation guide doctors in clinical research. World Med J 1964; 11: 281.
Maniatis T, Fritsh E, Sambrook T. (Eds). Molecular cloning. An laboratory manual. Chapter 7 “Extraction, purification and analysis of Messenger RNA from eukaryotic cells, 2ª edición. NY. Cold Spring, Harborg Laboratory; 1898: 7.1-7.25.
Chomczynski P, Sacchi N. Single step method of RNA isolation by acid guanidin thiocyanate phenol-choloform extitiation. Ann Biochem 1987; 162: 156.
Simms D, Cizdziel E, Chomczynski P. TRIzol: a new reagent for optimal single-step isolation of RNA. Focus 1993; 15: 99.
Sewall A, McRae S. RNA isolation with Trizol reagent. Focus 1998; 20: 36.
Siegel S. Estadística no paramétrica. Aplicada a las ciencias de la conducta. Capítulo 6 “El caso de dos muestras independientes”. México. Trillas; 1991: 120-30.
Rowe J, Liosveld J. Hematopoietic growth factors in acute leukemia. Leukemia 1997; 11: 328.
Ailles E, Gerhard B, Hogge E. Detection and characterization of primitive malignant and normal progenitors in patients with acute myelogenous leukemia using long-term coculture with supportive feeder layers and cytokines. Blood 1997; 90; 2555.
Kröning H, Täger M, Thiel U, Ittenson A, Reinhold D, Bühling F, Ketter E, Ansorge S. Over production of IL-7, IL-10 and TGF-b in multiple myeloma. Acta Haematol 1997; 98: 116.
Stites P, Abba J. Basic and clinical immunology. 7ª edition. Appleton and Lange. Norwalk. 1991.
Jacobsen W, Rothe M, Rostein L, Goeddel V, Simeland B, Veyby P, Siørland L, Jacobsen W. Role of the 75 Kda tumor necrosis factor receptor: inhibition of early hematopoiesis. Proc Natl Acad Sci USA 1994; 91: 10695.
Broxmeyer H. Suppressor cytokines and regulation of myelopoiesis. Am J Ped Hematol / Oncol 1992; 14: 22.
Löwenberg B, Touww P. Hematopoietic growth factors and their receptors in acute leukemia. Blood 1993; 81: 281.
Voorzanger N, Touitou R, García E, Delecluse H, Rousset F, Joab I, Favrot C, Blay Y. Interleukin (IL)-10 and IL-6 produced in vivo by Non-Hodgkin’s lymphoma cells and act as cooperative growth factors. Cancer Res 1996; 56: 5499.
Sappino A, Seelentag W, Pelte M, Alberto P, Vassalli P. Tumor necrosis factor / cachectin and lymphotoxin gene expression in lymph nodes from lymphoma patients. Blood 1990; 75: 958.
Filella X, Blade J, Guillermo A, Molina R, Rozman C, Ballesta A. Cytokines (IL-6, TNF-a, IL-1ª) and soluble interleukin-2 receptor as serum tumor markes in multiple myeloma. Cancer Detec Preven 1996; 20: 52.
Marcia J, Gómez X, Esquerda A, Pérez B, Callao V, Marzo C. Value of the determination of TNF-alpha in the plasma of patients with non-Hodgkins lymphoma. Leuke Lymph 1996; 20: 481.
Zinzani P, Baccini C, Zaccaria A, Visani G, Buzzi M, Morelli A, Molinari A, Salvucci M, Bendandi M, Rubbodi D, Gherlinzoni F, Zanchini R, Tura S. Clinical implications of serum levels of soluble CD23 and tumor necrosis factor alpha in low-grade non-Hodgkin’s lymphoma. Europ J Haemat 1996; 57: 335.
Broxmeyer H, Williams E, Lu S, Cooper S, Anderson L, Beyer S, Hoffman R, Rubin Y. The suppressive influence of human tumor necrosis factor on the bone marrow hematopoietic progenitor cells from normal donors and patients with leukemia: synergism of tumor necrosis factor and interferon-g. J Immunol 1986; 136: 4487.
Khoury E, Andre C, Pontvert-Delucq S, Drenou B, Baillou C, Guigon M, Najman A, Lemoine FM. Tumor necrosis factor alpha (TNF alpha) downregulates c-kit proto-oncogen product expression in normal and acute myeloid leukemia CD34+ cells via p55 TNF alpha receptors. Blood 1994; 84: 2506.
Sporn M, Roberts A. Transforming growth factor-b: multiple actions and potential clinical applications. JAMA 1989; 262: 938.
Buske C, Becker D, Feuring-Buske M, Hanning H, Wulf G, Schafer C, Hiddemann W, Wormann B. TGF-beta inhibits growth and induces apoptosis in leukemic B cells precursors. Leukemia 1997; 11: 386.
Taetle R, Payne C, Dos Santos B, Rusesell M, Segarini P. Effects of transforming growth factor beta 1 on growth and apoptosis of acute myelogenous leukemia cells. Cancer Res 1993; 53: 3386.
Kremer J, Reisbach G, Nerl C, Dormer P. B-cell chronic lymphocytic leukaemia cells express and release transforming growth factor-beta. Br J Haematol 1992; 80: 480.
Lagneaux L, Delforge A, Bernier M, Stryckmans P, Bron D. TGF-beta activity and expression of its receptors in B-cell lymphocytic leukemia. Leuk Lymph 1998; 31: 99.
Nowell P, Moore J. Aberrant responses of human lymphocytic neoplasms to cytokine regulation. Immunol Res 1998; 17: 171.
Bost L, Bieligk C, Jaffe M. Lymphokine mRNA expression by transplantable murine B lymphocytic malignancies. J Immunol 1995; 154: 715.
Snoeck H, Van Bockstaele R, Nys G, Lenjou M, Lardon F, Haenen L, Rodrigus I, Peetermans E, Berneman N. Interferon g selectively inhibits very primitive CD342+ CD38- and not more mature CD34+ CD38+ human hematopoietic progenitor cells. J Exp Med 1994; 180: 1177.
Buschle M, Campana D, Carding R, Richard C, Hoffbrand V, Brenner K. Interferon g inhibits apoptotic cell death in B cell choronic lymphocytic leukemia. J Exp Med 1993; 177: 213.
Yamada H, Ochi K, Nakada S, Takahara S, Nemoto T, Sekikawa T, Horiguchi-Yamada J. Interferon modulates the messenger RNA of G1-controlling genes to suppress the G1-to-S transition in Daudi cells. Mol Cell Biochem 1995: 152: 149.
Schwabe M, Cox W, Bosco C, Prohaska R, Kung H. Multiple cytokines inhibit interleukin-6-dependent murine hybridoma / plasmocytoma proliferation. Cell Immunol 1996; 168: 117.
Ely P, Wallace K, Givan L, Graziano F, Guyre M, Fanger W. Bispecific-armed, interferon g-primed macrophage-mediated phagocytosis of malignant non-Hodgkin’s lymphoma. Blood 1996; 87: 3813.
Blay J, Burdin N, Rousset F, Lanoir G, Biron P, Philip T, Banchereau J, Faurot C. Serum interleukin-10 in non-Hodgkin’s lymphoma. Blood 1996; 88: 1035.
Mori N, Gill S, Mougdil T, Murakami S, Eto S, Prager P. Interleukin-10 gene expression in adult T cell leukemia. Blood 1996; 88: 1035.
Burdin N, Peronne C, Banchereau J, Rousset F. Epstein-Barr virus transformation induces B lymphocites to produce human interleukin 10. J Exp Med 1993; 177: 295.
Finke J, Ternes P, Lange W, Mertelsman R, Dölker G. Expression of interleukin-10 in lymphocytes of different origin. Leukemia 1993; 7: 1852.
Benjamin D, Knobloch J, Dayton A. Human B-cell interleukin 10: B-cell lines derived from patients with adquired immune deficiency syndrome and Burkitt’s lymphoma constitutively secrete large quantities of interleukin-10. Blood 1992; 80: 1289.
Reya T, Contractor V, Couzens S, Wasik A, Emerson G, Carding R. Abnormal myelocitic cell development in interleukin-2 (IL-2) deficient mice: evidence for the involvement of IL-2 in myelopoiesis. Blood 1998; 91: 2935.