2015, Número 1
<< Anterior Siguiente >>
Gac Med Mex 2015; 151 (1)
Las células del epitelio amniótico humano (CEAh) como posible fuente de células troncales (CT)
García-López G, García-Castro IL, Avila-González D, Molina-Hernández A, Flores-Herrera H, Merchant-Larios H, Díaz-Martínez F
Idioma: Español
Referencias bibliográficas: 77
Paginas: 66-74
Archivo PDF: 309.30 Kb.
RESUMEN
Gracias a la investigación con CT se han realizado avances significativos en el campo de la biología del desarrollo. Las CT
se caracterizan por su capacidad de autorrenovación y diferenciación a distintos tipos celulares. Se han descrito dos tipos
de CT de acuerdo con el momento de su obtención: células troncales embrionarias (CTE) y adultas (CTA), las cuales tienen
características propias. Sin embargo, se han reportado diversos problemas con ambos tipos celulares que tienen que ser
resueltos antes de su posible aplicación en la clínica, motivo por el cual se ha sugerido que las membranas fetales podrían
ser una fuente alternativa para obtener CT. En las CEAh se ha encontrado la presencia de marcadores característicos de
CT pluripotentes y se ha documentado su capacidad como capa alimentadora para la expansión de diferentes tipos de CT.
Además, al ser un producto de desecho después del parto, su obtención no conlleva problemas éticos, motivo por el cual
este tipo de células se han convertido en una promesa para su posible uso en medicina regenerativa.
REFERENCIAS (EN ESTE ARTÍCULO)
Kuroda T, Yasuda S, Sato Y. Tumorigenicity studies for human pluripotent stem cell-derived products. Biol Pharm Bull. 2013;36(2): 189-92.
Lo B, Parham L. Ethical issues in stem cell research. Endocr Rev. 2009;30(3):204-13.
Wagner W, Wein F, Seckinger A, et al. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol. 2005;33(11):1402-16.
Evangelista M, Soncini M, Parolini O. Placenta-derived stem cells: new hope for cell therapy? Cytotechnology. 2008;58(1):33-42.
Ilancheran S, Michalska A, Peh G, Wallace EM, Pera M, Manuelpillai U. Stem cells derived from human fetal membranes display multilineage differentiation potential. Biol Reprod. 2007;77(3):577-88.
Chen CP, Liu SH, Huang JP, et al. Engraftment potential of human placenta-derived mesenchymal stem cells after in utero transplantation in rats. Hum Reprod. 2009;24(1):154-65.
Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292(5819):154-6.
Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A. 1981;78(12):7634-8.
Pereira Fde A, Tavares RL, Camargos AF, da Silva Filho AL. Telomerase activity alterations in sequential passages of mouse embryonic stem cells. Cell Biol Int. 2012;36(8):755-7.
Thomson JA, Kalishman J, Golos TG, et al. Isolation of a primate embryonic stem cell line. Proc Natl Acad Sci U S A. 1995;92(17):7844-8.
Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145-7.
Bradley A, Evans M, Kaufman MH, Robertson E. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature. 1984;309(5965):255-6.
Artus J, Hadjantonakis AK. Generation of chimeras by aggregation of embryonic stem cells with diploid or tetraploid mouse embryos. Methods Mol Biol. 2011;693:37-56.
Lin CJ, Amano T, Zhang J, Chen YE, Tian XC. Acceptance of embryonic stem cells by a wide developmental range of mouse tetraploid embryos. Biol Reprod. 2010;83(2):177-84.
Trounson A. The production and directed differentiation of human embryonic stem cells. Endocr Rev. 2006;27(2):208-19.
Hanna JH, Saha K, Jaenisch R. Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues. Cell. 2010;143(4):508-25.
Chenoweth JG, McKay RD, Tesar PJ. Epiblast stem cells contribute new insight into pluripotency and gastrulation. Dev Growth Differ. 2010;52(3):293-301.
Stadtfeld M, Hochedlinger K. Induced pluripotency: history, mechanisms, and applications. Genes Dev. 2010;24(20):2239-63.
Teoh HK, Cheong SK. Induced pluripotent stem cells in research and therapy. Malays J Pathol. 2012;34(1):1-13.
Wu SM, Hochedlinger K. Harnessing the potential of induced pluripotent stem cells for regenerative medicine. Nat Cell Biol. 2011;13(5):497-505.
Zhang J, Li L. Stem cell niche: microenvironment and beyond. J Biol Chem. 2008;283(15):9499-503.
Gurtner GC, Callaghan MJ, Longaker MT. Progress and potential for regenerative medicine. Annu Rev Med. 2007;58:299-312.
Weissman IL. Stem cells: units of development, units of regeneration, and units in evolution. Cell. 2000;100(1):157-68.
Luu HH, Song WX, Luo X, et al. Distinct roles of bone morphogenetic proteins in osteogenic differentiation of mesenchymal stem cells. J Orthop Res. 2007;25(5):665-77.
Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation. 1968;6(2):230-47.
López-Cruz G M-RJ, Gaván-Espinosa H, Sosa-Vásquez J, Reyes-Hernández U. Estudio de la placenta. I. Correlación: Peso del recien nacido y peso placentario. Bol Clin Hosp Infant Edo Son. 2009;26(1):8-12.
Bourne G. The foetal membranes. A review of the anatomy of normal amnion and chorion and some aspects of their function. Postgrad Med J. 1962;38:193-201.
Benirschke K KP. Anatomy and Pathology of the placental membranes. En: Pathology of the human Placenta. 4.a ed. Nueva York; 2000. p. 281- 334.
Fu G, Brkic J, Hayder H, Peng C. MicroRNAs in Human Placental Development and Pregnancy Complications. Int J Mol Sci. 2013;14(3):5519-44.
Can A, Karahuseyinoglu S. Concise review: human umbilical cord stroma with regard to the source of fetus-derived stem cells. Stem Cells. 2007;25(11):2886-95.
Mamede AC, Carvalho MJ, Abrantes AM, Laranjo M, Maia CJ, Botelho MF. Amniotic membrane: from structure and functions to clinical applications. Cell Tissue Res. 2012;349(2):447-58.
Takaoka K, Hamada H. Cell fate decisions and axis determination in the early mouse embryo. Development. 2012;139(1):3-14.
Miki T. Amnion-derived stem cells: in quest of clinical applications. Stem Cell Res Ther. 2011;2(3):25.
Dunnebacke TH, Zitcer EM. Preparation and cultivation of primary human amnion cells. Cancer Res. 1957;17(11):1043-6.
Bilic G, Zeisberger SM, Mallik AS, Zimmermann R, Zisch AH. Comparative characterization of cultured human term amnion epithelial and mesenchymal stromal cells for application in cell therapy. Cell Transpl. 2008;17(8):955-68.
Kim J, Kang HM, Kim H, et al. Ex vivo characteristics of human amniotic membrane-derived stem cells. Cloning Stem Cells. 2007;9(4):581-94.
Miki T, Lehmann T, Cai H, Stolz DB, Strom SC. Stem cell characteristics of amniotic epithelial cells. Stem Cells. 2005;23(10):1549-59.
Sakuragawa N, Thangavel R, Mizuguchi M, Hirasawa M, Kamo I. Expression of markers for both neuronal and glial cells in human amniotic epithelial cells. Neurosci Lett. 1996;209(1):9-12.
Venkatachalam S, Palaniappan T, Jayapal PK, Neelamegan S, Rajan SS, Muthiah VP. Novel neurotrophic factor secreted by amniotic epithelial cells. Biocell. 2009;33(2):81-9.
Yang XX, Xue SR, Dong WL, Kong Y. Therapeutic effect of human amniotic epithelial cell transplantation into the lateral ventricle of hemiparkinsonian rats. Chin Med J (Engl). 2009;122(20):2449-54.
Pratama G, Vaghjiani V, Tee JY, et al. Changes in culture expanded human amniotic epithelial cells: implications for potential therapeutic applications. PLoS One. 2011;6(11):e26136.
Miki T, Marongiu F, Dorko K, Ellis EC, Strom SC. Isolation of amniotic epithelial stem cells. Curr Protoc Stem Cell Biol. 2010;Chapter 1:Unit 1E.3.
Tachibana M, Amato P, Sparman M, et al. Human embryonic stem cells derived by somatic cell nuclear transfer. Cell. 2013;153(6):1228-38.
Gavrilov S, Marolt D, Douglas NC, et al. Derivation of two new human embryonic stem cell lines from nonviable human embryos. Stem Cells Int. 2011;2011:765378.
Murphy S, Rosli S, Acharya R, et al. Amnion epithelial cell isolation and characterization for clinical use. Curr Protoc Stem Cell Biol. 2010;Chapter 1:Unit 1E.6.
Whittle WL, Gibb W, Challis JR. The characterization of human amnion epithelial and mesenchymal cells: the cellular expression, activity and glucocorticoid regulation of prostaglandin output. Placenta. 2000;21(4):394-401.
Miki T, Mitamura K, Ross MA, Stolz DB, Strom SC. Identification of stem cell marker-positive cells by immunofluorescence in term human amnion. J Reprod Immunol. 2007;75(2):91-6.
Bibikova M, Laurent LC, Ren B, Loring JF, Fan JB. Unraveling epigenetic regulation in embryonic stem cells. Cell Stem Cell. 2008;2(2):123-34.
Chambers I, Tomlinson SR. The transcriptional foundation of pluripotency. Development. 2009;136(14):2311-22.
Hammer A, Hutter H, Blaschitz A, et al. Amnion epithelial cells, in contrast to trophoblast cells, express all classical HLA class I molecules together with HLA-G. Am J Reprod Immunol. 1997;37(2):161-71.
Thatte S, Gupta L. Amniotic membrane transplantation in surgically induced necrotizing scleritis with peripheral ulcerative keratitis. Middle East Afr J Ophthalmol. 2012;19(4):419-21.
Clare G, Suleman H, Bunce C, Dua H. Amniotic membrane transplantation for acute ocular burns. Cochrane Database Syst Rev. 2012;9:CD009379.
Tamagawa T, Ishiwata I, Saito S. Establishment and characterization of a pluripotent stem cell line derived from human amniotic membranes and initiation of germ layers in vitro. Hum Cell. 2004;17(3):125-30.
Grueterich M, Espana EM, Tseng SC. Ex vivo expansion of limbal epithelial stem cells: amniotic membrane serving as a stem cell niche. Surv Ophthalmol. 2003;48(6):631-46.
Rendal-Vazquez ME, San-Luis-Verdes A, Yebra-Pimentel-Vilar MT, et al. Culture of limbal stem cells on human amniotic membrane. Cell Tissue Bank. 2012;13(3):513-9.
Chen YF, Dong Z, Jiang L, Lai D, Guo L. Mouse primed embryonic stem cells could be maintained and reprogrammed on human amnion epithelial cells. Stem Cells Dev. 2013;22(2):320-9.
Liu T, Cheng W, Huang Y, Huang Q, Jiang L, Guo L. Human amniotic epithelial cell feeder layers maintain human iPS cell pluripotency via inhibited endogenous microRNA-145 and increased Sox2 expression. Exp Cell Res. 2012;318(4):424-34.
Anchan RM, Quaas P, Gerami-Naini B, et al. Amniocytes can serve a dual function as a source of iPS cells and feeder layers. Hum Mol Genet. 2011;20(5):962-74.
Liu T, Guo L, Liu Z, Cheng W. Human amniotic epithelial cells maintain mouse spermatogonial stem cells in an undifferentiated state due to high leukemia inhibitor factor (LIF) expression. In Vitro Cell Dev Biol Anim. 2011;47(4):318-26.
Liu T, Huang Y, Huang Q, Jiang L, Guo L, Liu Z. Use of human amniotic epithelial cells as a feeder layer to support undifferentiated growth of mouse spermatogonial stem cells via epigenetic regulation of the Nanog and Oct-4 promoters. Acta Biol Hung. 2012;63(2):167-79.
Lai D, Cheng W, Liu T, Jiang L, Huang Q, Liu T. Use of human amnion epithelial cells as a feeder layer to support undifferentiated growth of mouse embryonic stem cells. Cloning Stem Cells. 2009;11(2):331-40.
Hao Y, Ma DH, Hwang DG, Kim WS, Zhang F. Identification of antiangiogenic and antiinflammatory proteins in human amniotic membrane. Cornea. 2000;19(3):348-52.
Tseng SC, Li DQ, Ma X. Suppression of transforming growth factor-beta isoforms, TGF-beta receptor type II, and myofibroblast differentiation in cultured human corneal and limbal fibroblasts by amniotic membrane matrix. J Cell Physiol. 1999;179(3):325-35.
King AE, Paltoo A, Kelly RW, Sallenave JM, Bocking AD, Challis JR. Expression of natural antimicrobials by human placenta and fetal membranes. Placenta. 2007;28(2-3):161-9.
Akle CA, Adinolfi M, Welsh KI, Leibowitz S, McColl I. Immunogenicity of human amniotic epithelial cells after transplantation into volunteers. Lancet. 1981;2(8254):1003-5.
Hunt JS, Petroff MG, McIntire RH, Ober C. HLA-G and immune tolerance in pregnancy. FASEB J. 2005;19(7):681-93.
Koizumi NJ, Inatomi TJ, Sotozono CJ, Fullwood NJ, Quantock AJ, Kinoshita S. Growth factor mRNA and protein in preserved human amniotic membrane. Curr Eye Res. 2000;20(3):173-7.
Jaenisch R, Young R. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell. 2008;132(4):567-82.
Raisanen S, Gissler M, Saari J, Kramer M, Heinonen S. Contribution of risk factors to extremely, very and moderately preterm births - register- based analysis of 1,390,742 singleton births. PLoS One. 2013;8(4):e60660.
Minas V, Mylonas I, Schiessl B, et al. Expression of the blood-group-related antigens Sialyl Lewis a, Sialyl Lewis x and Lewis y in term placentas of normal, preeclampsia, IUGR- and HELLP-complicated pregnancies. Histochem Cell Biol. 2007;128(1):55-63.
Parolini O, Alviano F, Bagnara GP, et al. Concise review: isolation and characterization of cells from human term placenta: outcome of the first international Workshop on Placenta Derived Stem Cells. Stem Cells. 2008;26(2):300-11.
Banas RA, Trumpower C, Bentlejewski C, Marshall V, Sing G, Zeevi A. Immunogenicity and immunomodulatory effects of amnion-derived multipotent progenitor cells. HumI Immunol. 2008;69(6):321-8.
Stadler G, Hennerbichler S, Lindenmair A, et al. Phenotypic shift of human amniotic epithelial cells in culture is associated with reduced osteogenic differentiation in vitro. Cytotherapy. 2008;10(7):743-52.
Fatimah SS, Ng SL, Chua KH, Hayati AR, Tan AE, Tan GC. Value of human amniotic epithelial cells in tissue engineering for cornea. Hum Cell. 2010;23(4):141-51.
Maguire CT, Demarest BL, Hill JT, et al. Genome-wide analysis reveals the unique stem cell identity of human amniocytes. PLoS One. 2013;8(1):e53372.
Marongiu F, Gramignoli R, Dorko K, et al. Hepatic differentiation of amniotic epithelial cells. Hepatology. 2011;53(5):1719-29.
Fang CH, Jin J, Joe JH, et al. In vivo differentiation of human amniotic epithelial cells into cardiomyocyte-like cells and cell transplantation effect on myocardial infarction in rats: comparison with cord blood and adipose tissue-derived mesenchymal stem cells. Cell Transplant. 2012;21(8):1687-96.