2014, Número 3
<< Anterior Siguiente >>
Perinatol Reprod Hum 2014; 28 (3)
MicroRNA: a tool that can be used as a fetal corticogenesis biomarker
Lamadrid-Romero M, Díaz-Martínez F, Molina-Hernández A
Idioma: Español
Referencias bibliográficas: 36
Paginas: 146-153
Archivo PDF: 716.16 Kb.
RESUMEN
Los microRNA son RNA pequeños no codificantes que regulan la traducción de RNA mensajeros. En el tejido cerebral de mamífero, existe una regulación temporal de los niveles de estas moléculas durante el desarrollo, los cuales están relacionados directamente con momentos específicos en la formación del sistema nervioso central y tienen un papel trascendental en la citoarquitectura cerebral. Existe una gran cantidad de deficiencias y/o alteraciones de las funciones cerebrales que no pueden ser explicadas por causas genéticas o detectadas por los métodos convencionales, por lo que es de gran importancia identificar marcadores moleculares no invasivos de problemas sutiles relacionados con alteraciones en la diferenciación, proliferación, muerte celular u organización del tejido nervioso que puedan tener consecuencias negativas en la vida postnatal del producto, principalmente en el área cognitiva, motora y social. Una alternativa es la búsqueda y determinación de los niveles de microRNA involucrados en la corticogénesis fetal en suero materno. Aquí revisaremos algunas de las características de estas moléculas que las hacen buenas candidatas para ser consideradas como biomarcadores del desarrollo cerebral fetal, entre las que se encuentran la forma en que se sintetizan y llegan al torrente sanguíneo, su estabilidad, su patrón de expresión durante la corticogénesis y su presencia en el suero materno.
REFERENCIAS (EN ESTE ARTÍCULO)
Mehler MF, Mattick JS. Non-coding RNAs in the nervous system. J Physiol. 2006; 575: 333-41.
Cortez MA, Calin GA. MicroRNA identification in plasma and serum: a new tool to diagnose and monitor diseases. Expert Op Biol Ther. 2009; 9: 703-11.
Cai X, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA. 2004; 10: 1957-66.
Lee Y. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004; 23: 4051-60.
Lee Y. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003; 425: 415-9.
Denli AM. Processing of primary microRNAs by the microprocessor complex. Nature. 2004; 432: 231-5.
Lund E. Nuclear export of microRNA precursors. Science. 2004; 303: 95-8.
Hutvagner G. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science. 2001; 293: 834-8.
Khvorova AA, Reynolds A, Jayasena SD. Functional siRNAs and miRNAs exhibit strand bias. Cell. 2003; 115: 209-16.
Lo YM. Presence of fetal DNA in maternal plasma and serum. Lancet. 1997; 350: 485-7.
Ng EK. mRNA of placental origin is readily detectable in maternal plasma. Proc Nat Acad Sci. 2003; 100: 4748-53.
Wray AM. Prenatal diagnosis of supernumerary ring chromosome 1: case report and review of the literature. Genet Couns. 2007; 18: 233-41.
Chiu RW. Prenatal exclusion of beta thalassaemia major by examination of maternal plasma. Lancet. 2002; 360: 998-1000.
Chen X. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008; 18: 997-1006.
Nadarajah B. Ventricle-directed migration in the developing cerebral cortex. Nature Neurosci. 2002; 5: 218-24.
Nadarajah B. Parnavelas Gj. Modes of neuronal migration in the developing cerebral cortex. Nature Rev Neurosci. 2002; 3: 423-32.
Nielsen JA. Integrating microRNA and mRNA expression profiles of neuronal progenitors to identify regulatory networks underlying the onset of cortical neurogenesis. BMC Neurosci. 2009; 10: 98.
Krichevsky AM. A microRNA array reveals extensive regulation of microRNAs during brain development. RNA. 2003; 9: 1274-81.
Miska EA. Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol. 2004; 5: 68.
De Pietri Tonelli D. miRNAs are essential for survival and differentiation of newborn neurons but not for expansion of neural progenitors during early neurogenesis in the mouse embryonic neocortex. Development. 2008; 135: 3911-21.
Wu L, Belasco GJ. Micro-RNA regulation of the mammalian lin-28 gene during neuronal differentiation of embryonal carcinoma cells. Mol Cel Biol. 2005; 25: 9198-208.
Wienholds E. The microRNA-producing enzyme Dicer1 is essential for zebrafish development. Nature Gen. 2003; 35: 217-8.
Carey RG, Li B, DiCicco-Bloom E. Pituitary adenylate cyclase activating polypeptide anti-mitogenic signaling in cerebral cortical progenitors is regulated by p57Kip2-dependent CDK2 activity. J Neurosci. 2002; 22: 1583-91.
Visvanathan J. The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes Dev. 2007; 21: 744-9.
Krichevsky AM. Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells. 2006; 24: 857-64.
Jiang L. Hsa-miR-125a-3p and hsa-miR-125a-5p are downregulated in non-small cell lung cancer and have inverse effects on invasion and migration of lung cancer cells. BMC Cancer. 2010; 10: 318-21.
Botto LD. Neural-tube defects. N Engl J Med. 1999; 341: 1509-19.
Becerra JE. Diabetes mellitus during pregnancy and the risks for specific birth defects: a population-based case-control study. Pediatrics. 1990; 85: 1-9.
Dionne G. Gestational diabetes hinders language development in offspring. Pediatrics. 2008; 122: e1073-9.
Phelan SA, Ito M, Loeken MR. Neural tube defects in embryos of diabetic mice: role of the Pax-3 gene and apoptosis. Diabetes. 1997; 46: 1189-97.
Sato N. Identification of genes differentially expressed in mouse fetuses from streptozotocin-induced diabetic pregnancy by cDNA subtraction. Endocrinol J. 2008; 55: 317-23.
Loeken MR. Advances in understanding the molecular causes of diabetes-induced birth defects. J Soc Gynecol Investig. 2006; 13: 2-10.
Zametkin AJ. Cerebral glucose metabolism in adults with hyperactivity of childhood onset. N Engl J Med. 1990; 323: 1361-6.
Ernst M. High midbrain [18F]DOPA accumulation in children with attention deficit hyperactivity disorder. Am J Psychiat. 1999; 156: 1209-15.
Waschbusch DA. A meta-analytic examination of comorbid hyperactive-impulsive-attention problems and conduct problems. Psychol Bull. 2002; 128: 118-50.
Chan WY. Proliferation and apoptosis in the developing human neocortex. Anatomical Record. 2002; 267: 261-76.