2006, Número 1
Siguiente >>
Vet Mex 2006; 37 (1)
Producción de enzimas hemicelulolíticas por fermentación sólida y su aplicación en alimento balanceado para pollo de engorda
Lagunas BI, García ABE, Castaño TE, Regalado GC, Ávila GE
Idioma: Español/Inglés
Referencias bibliográficas: 35
Paginas: 1-12
Archivo PDF: 335.87 Kb.
RESUMEN
El aprovechamiento de los residuos agroindustriales puede contribuir a reducir la contaminación ambiental mediante su incorporación a procesos como la fermentación en estado sólido (FES), donde puedan obtenerse productos de mayor valor agregado. La FES puede efectuarse con el uso de residuos del procesamiento de café soluble y olote de maíz, y el hongo filamentoso
Aspergillus niger GS1, para obtener complejos enzimáticos con actividad hemicelulolítica. Los extractos con actividad principal de mananasa (M) y de xilanasa (X) se concentraron y mezclaron en proporción 1:1 (v/v; MX). MX contenía 143.6 U/mL de mananasa y 268.7 U/mL de xilanasa (1 U = µg de manosa y xilosa liberada por min, a 50°C, con harina de algarrobo y xilano de avena como sustratos, respectivamente). Se aplicó MX en dietas a base de sorgo y soya, con energía metabolizable (EM) y proteína cruda 3% menor a la empleada, para pollos de engorda mantenidos en jaulas metabólicas durante 21 días. La mezcla MX indujo un incremento significativo (P ‹ 0.05) de EM (2%), que se atribuyó a la hidrólisis parcial de la hemicelulosa del alimento. Bajo condiciones de crianza comercial (52 días), los extractos MX y M mejoraron significativamente (P ‹ 0.05) la ganancia de peso (GP) y el índice de conversión (IC), con respecto a un aditivo enzimático comercial. El aditivo enzimático M proporcionó mejor resultado con 3 132 g de GP promedio y un IC alimento/carne de 1.55, mientras que el alimento testigo produjo 2 931 g de GP y un IC de 1.70.
REFERENCIAS (EN ESTE ARTÍCULO)
Moo-Young M, Moreira AR. Principles of solid-substrate fermentation. In: Smith JE, Berry DR, editors. The filamentous fungi. London:Edward Arnold, 1983: 117-144.
Raimbault M. General and microbiological aspects of solid substrate fermentation. J Biotechnol 1998;1:4-28.
Mitchell D, Krieger N, Stuart D, Pandey A. New developments in solid-state fermentation, II. Rational approaches to the design, operation and scale-up of bioreactors. Process Biochem 2000;35:1211-1225.
Pandey A, Soccol C, Mitchell D. New developments in solid state fermentation: I-bioprocesses and products. Process Biochem 2000;35:1153-1169.
Perez-Guerra A, Torrado-Agrasar C, Pastrana L. Main characteristics and applications of solid substrate fermentation. Electron J Environ Agric Food Chem [serial online] 2003 May-Jun; 2 (3): [8 screens]. Available from: URL: http://ejeafche.uvigo.es/about. htm
Regalado C, Garcia-Almendarez BE, Venegas-Barrera LM, Téllez-Jurado A, Rodríguez-Serrano G, Huerta-Ochoa S, et al. Production, partial purification and properties of ß-mannanases obtained by solid substrate fermentation of spent soluble coffee wastes and copra paste using Aspergillus oryzae and Aspergillus niger. J Sci Food Agric 2000;80: 1343-1350.
Clifford MN. Green and toasted coffee beans. Process Biochem 1975;15:13-19.
Stålbrand H. Enzymology of endo-1,4- ß-mannanase. In: Whitaker JR, Voragen AGJ, Wong DWS, editors. Handbook of food enzymology. New York:Marcel Dekker, 2003:879-961.
Pellerin P, Gosselin M, Lepoutre JP, Samain E, Debeire P. Enzymic production of oligosaccharides from corncob xylan. Enzyme Microb Technol 1991;13:617-623.
Biely P. Xylanolytic enzymes. In: Whitaker JR, Voragen AGJ, Wong DWS, editors. Handbook of Food Enzymology. New York: Marcel Dekker, 2003:879-961.
Brand D, Pandey A, Rodriguez-Leon JA, Roussos S, Brand I, Soccol CR. Packed bed column fermenter and kinetic modeling for upgrading the nutritional quality of coffee husk in solid-state fermentation. Biotechnol Prog 2001;17:1065-1070.
Gübitz GM, Haltrich D, Latal B, Steiner W. Mode of depolymerization of hemicellulose by various mannanase and xylanases in relation to their ability to bleach softwood pulp. Appl Microbiol Biotech 1997;47:658-662.
Wong KKY, Saddler JN. Applications of hemicellulases in the food, feed, and pulp and paper industries. In: Coughlan MP, Hazlewood GP, editors. Hemicellulose and hemicellulases. London:Portland Press, 1993:127-143.
McNaughton J, Hsiao H, Anderson D, Fodge D. Corn/Soy/Fat diets for broilers, beta-mannanase, and improved feed conversion. South Poult Sci 1998;78:119-121.
Fodge DW, Hsiao H, inventors. Chemgen Corporation, propietary. Hemicellulase use in feeds with low caloric content. United States Patent 6,162,473. 2000 December 19.
Apajalahti J, Rautonen N, Bedford MR, inventors. Finfeeds International, propietary. An additive for an animal feed. Gran Bretaña, EP 1237569 B1. 2003 August 27.
Elsenhans B, Süfke U, Blume R, Caspary WF. The influence of carbohydrate gelling agents on rat intestinal transport of monosaccharides and neutral amino acids in vitro. Clin Sci 1980;59:373-380.
Cortés CA, Águila SR, Avila GE. La utilización de enzimas como aditivos en dietas para pollos de engorda. Vet Méx. 2002;33:1-9.
Bühler M, Limper J, Müller A, Schwarz G, Simon O, Sommer M, et al. Las enzimas en la nutrición animal. Bonn: Arbeitsgemeinschaft für Wirkstoffe in der Tierernährung (AWT), 1998.
Fodge DW, Anderson DM, inventors. Chemgen Corporation, proprietary. Hemicellulase supplement to improve the energy efficiency of hemicellulose-containing animal feed. United States Patent 5,429,828. 1995 julio 4.
UNA, Avicultura mexicana: monografía. Unión Nacional de Avicultores de México.1999 [cited 2004 May 10; 1(2): [6 screens]. Available from: URL: http:// www.una.com.mx/content/avicultura/avi01.htm, 10/05/2004.
Lagunas BI. Producción de extractos enzimáticos por fermentación sólida y su aplicación en alimento balanceado para pollo de engorda (tesis de maestría). Querétaro (Querétaro) México: Univ Aut de Querétaro, 2004.
Sinner M, Puls J. Non-corrosive dye reagent for detection for reducing sugars in borate complexion- exchange chromatography. J Chromatogr 1978;156: 197-204.
Ravindran V, Selle PH, Ravindran G, Morel PCH, Kies AK, Bryden WL. Microbial phytase improves performance, apparent metabolizable energy, and ileal amino acid digestibility of broilers fed a lysine-deficient diet. Poult Sci 2001;80;338-344.
Lesson S, Summers JD. Scott´s Nutrition of the chicken. 4th ed. Guelph, Ontario Canada University Books, 2001.
JMP (statistical software) version 3.0. Cary (NC): SAS Institute, 1995.
Hogg D, Woo EJ, Bolam DN, McKie VA, Gilbert HJ, Pickersgill W. Crystal structure of mannanase 26A from Pseudomonas cellulose and analysis of residues involved in substrate binding, J Biol Chem 2001;276:31186-31192.
Coughlan MP. Towards an understanding of the mechanism of action of main chain-hydrolyzing xylanases. In: Visser J, Beldman G, Kusters-van Someren MA, Voragen AGJ, editors. Xylans and xylanases. Progress in Biotechnology. Amsterdam:Elsevier, 1992:111-139.
Yaguchi M, Roy C, Ujie M, Watson DC, Wakarchuk W. Amino acid sequence of the low-molecular-weight xylanase from Trichoderma viride. In: Visser J, Beldman G, Kusters-van Someren MA, Voragen AGJ, editors. Xylans and xylanases. Progress in Biotechnology. Amsterdam:Elsevier, 1992;7:149-154.
Han Z. Effect of enzyme supplementation of diets on the physiological function and performance of poultry. Marquardt RR, Han Z, editors. Enzymes in poultry and swine nutrition. Toronto: IDRC, 1997:65-78.
Bedford MR, Morgan AJ, Clarkson K, Schulze HK, inventors. Genencor International and Finfeeds International, proprietaries. Enzyme feed additive and animal feed. United States Patent 5,612,055. 1997 March 18.
Zanella I, Sakomura NK, Silversides FG, Fiqueirdo A, Pack M. Effect of enzyme supplementation of broiler diets based on corn and soybeans. Poult Sci 1999;78:561-568
Walsh GA, Power RF, Headon DR. Enzymes in the animal-feed industry. Trends Biotechnol 1993;11:424-429.
Leeson S, Caston L, Summers JD. Broiler response to energy or energy and protein dilution in the finisher diet. Poult Sci 1996;75:522-528.
Leeson S, Summers JD. Commercial poultry nutrition. 2nd ed. Guelph: University Books, 1997.