2005, Número 4
Papel de los receptores tipo toll en la inmunidad innata y su implicación en medicina veterinaria
Bautista GCR, Mosqueda GJJ
Idioma: Español/Inglés
Referencias bibliográficas: 96
Paginas: 453-468
Archivo PDF: 516.11 Kb.
RESUMEN
El concepto de inmunidad innata ha tenido un cambio notable durante los últimos cinco años, debido al descubrimiento de los receptores tipo Toll (TLR, proteínas transmembranales expresadas por células del sistema inmunitario innato) en los mamíferos y su participación en el reconocimiento de patógenos microbianos. Actualmente el estudio de estos receptores es de gran interés, sobre todo en medicina humana y muy recientemente en medicina veterinaria, debido a que desempeñan un papel central, tanto en el desencadenamiento de la inmunidad innata, como en la coordinación entre las inmunidades innata y adaptativa. Esta revisión pretende mostrar el concepto del papel de los receptores tipo Toll en los procesos de inmunidad desde la perspectiva de su importancia en medicina veterinaria.
REFERENCIAS (EN ESTE ARTÍCULO)
Janeway CA Jr, Medzhitov R. Innate immune recognition. Annu Rev Immunol 2002; 20:197-216.
Janeway CA Jr. How the immune system protects the host from infection. Microbes Infect 2001; 3:1167-71.
Strieter RM, Belperio JA and Keane MP. Cytokines in innate host defense in the lung. J Clin Invest 2002; 109:699-705.
McGuinness DH, Dehal PK, Pleass RJ. Pattern recognition molecules and innate immunity to parasites. Trends Parasitol 2003; 19:312-9.
Teixeira MM, Almeida IC, Gazzinelli RT. Introduction: innate recognition of bacteria and protozoan parasites. Microbes Infect 2002; 4:883-6.
Latz E, Golenbock DT. Receptor “cross talk” in innate immunity. J Clin Invest. 2003; 112:1136-7.
Janeway CA Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol. 1989; 54( Pt 1):1-13.
Medzhitov R , Janeway CA Jr. Innate immunity: the virtues of a nonclonal system of recognition. Cell 1997; 91:295-8.
Medzhitov R. Toll-like receptors and innate immunity. Nat Rev Immunol 2001; 1:135-45.
Hashimoto C, Hudson KL, Anderson KV. The Toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein. Cell 1988; 52:269-79.
Gay NJ, Keith FJ. Drosophila Toll and IL-1 receptor. Nature 1991; 351:355-6.
Wasserman SA. A conserved signal transduction pathway regulating the activity of the rel-like proteins dorsal and NF-kappa B. Mol Biol Cell 1993; 4:767-71.
Morisato D, Anderson KV. The spatzle gene encodes a component of the extracellular signaling pathway establishing the dorsal-ventral pattern of the Drosophila embryo. Cell 1994; 76:677-88.
Belvin MP, Anderson KV. A conserved signaling pathway: the Drosophila toll-dorsal pathway. Annu Rev Cell Dev Biol 1996; 12:393-416.
Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 1996; 86:973-83.
Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997; 388:394-7.
Rock FL, Hardiman G, Timans JC, Kastelein RA, Bazan JF. A family of human receptors structurally related to Drosophila Toll. Proc Natl Acad Sci U S A 1998; 95:588-93.
Takeuchi O, Kawai T, Sanjo H, Copeland NG, Gilbert DJ, Jenkins NA et al. TLR6: A novel member of an expanding toll-like receptor family. Gene 1999; 231:59-65.
Chuang TH, Ulevitch RJ. Cloning and characterization of a sub-family of human toll-like receptors: hTLR7, hTLR8 and hTLR9. Eur Cytokine Netw 2000; 11:372-8.
Chuang T, Ulevitch RJ. Identification of hTLR10: a novel human Toll-like receptor preferentially expressed in immune cells. Biochim Biophys Acta 2001; 1518:157-61.
Du X, Poltorak A, Wei Y, Beutler B. Three novel mammalian toll-like receptors: gene structure, expression, and evolution. Eur Cytokine Netw 2000; 11:362-71.
Zhang D, Zhang G, Hayden MS, Greenblatt MB, Bussey C, Flavell RA et al. A toll-like receptor that prevents infection by uropathogenic bacteria. Science 2004; 303:1522-1526.
Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol 2003; 21:335-76
Takeuchi O, Sato S, Horiuchi T, Hoshino K, Takeda K, Dong Z et al. Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J Immunol. 2002 169:10-14.
Wyllie DH, Kiss-Toth E, Visintin A, Smith SC, Boussouf S, Segal DM et al. Evidence for an accessory protein function for Toll-like receptor 1 in anti-bacterial responses. J Immunol 2000; 165:7125-32.
Alexopoulou L, Thomas V, Schnare M, Lobet Y, Anguita J, Schoen RT et al. Hyporesponsiveness to vaccination with Borrelia burgdorferi OspA in humans and in TLR1- and TLR2-deficient mice. Nat Med 2002; 8:878-84.
Lien E, Sellati TJ, Yoshimura A, Flo TH, Rawadi G, Finberg RW et al. Toll-like receptor 2 functions as a pattern recognition receptor for diverse bacterial products. J Biol Chem 1999; 274:33419-25.
Schwandner R, Dziarski R, Wesche H, Rothe M, Kirschning CJ. Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2. J Biol Chem 1999; 274:17406-9.
Lehner MD, Morath S, Michelsen KS, Schumann RR, Hartung T. Induction of cross-tolerance by lipopolysaccharide and highly purified lipoteichoic acid via different Toll-R like receptors independent of paracrine mediators. J Immunol 2001; 166:5161-7.
Underhill DM, Ozinsky A, Smith KD, Aderem A. Toll-like receptor-2 mediates mycobacteria-induced proinflammatory signaling in macrophages. Proc Natl Acad Sci U S A 1999; 96:14459-63.
Hajjar AM, O’Mahony DS, Ozinsky A, Underhill DM, Aderem A, Klebanoff SJ et al. Cutting edge: functional interactions between toll-like receptor (TLR) 2 and TLR1 or TLR6 in response to phenol-soluble modulin. J Immunol 2001; 166:15-9.
Campos MA, Almeida IC, Takeuchi O, Akira S, Valente EP, Procopio DO et al. Activation of Toll-like receptor-2 by glycosylphosphatidylinositol anchors from a protozoan parasite. J Immunol 2001; 167:416-23.
Opitz B, Schroder NW, Spreitzer I, Michelsen KS, Kirschning CJ, Hallatschek W et al. Toll-like receptor-2 mediates Treponema glycolipid and lipoteichoic acid-induced NF-kappaB translocation. J Biol Chem 2001; 276:22041-7.
Massari P, Henneke P, Ho Y, Latz E, Golenbock DT, Wetzler LM. Cutting edge: Immune stimulation by neisserial porins is toll-like receptor 2 and MyD88 dependent. J Immunol 2002; 168:1533-7.
Underhill DM, Ozinsky A, Hajjar AM, Stevens A, Wilson CB, Bassetti M et al. The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 1999; 401:811-5.
Werts C, Tapping RI, Mathison JC, Chuang TH, Kravchenko V, Saint Girons I et al. Leptospiral lipopolysaccharide activates cells through a TLR2-dependent mechanism. Nat Immunol 2001; 2:346-52.
Hirschfeld M, Weis JJ, Toshchakov V, Salkowski CA, Cody MJ, Ward DC et al. Signaling by toll-like receptor 2 and 4 agonists results in differential gene expression in murine macrophages. Infect Immun 2001; 69:1477-82.
Netea MG, van Deuren M, Kullberg BJ, Cavaillon JM, Van der Meer JW. Does the shape of lipid A determine the interaction of LPS with Toll-like receptors? Trends Immunol 2002; 23:135-139.
Vabulas RM, Ahmad-Nejad P, Ghose S, Kirschning CJ, Issels RD, Wagner H. HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. J Biol Chem 2002; 277:15107-1512.
O’Neill LA. Toll-like receptor signal transduction and the tailoring of innate immunity: a role for Mal? Trends Immunol 2002; 23:296-300.
Rehli M. Of mice and men: species variations of Toll-like receptor expression. Trends Immunol 2002; 23:375-378.
Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 2001; 413:732-738.
Muzio M, Bosisio D, Polentarutti N, D’Amico G, Stoppacciaro A, Mancinelli R et al. Differential expression and regulation of toll-like receptors (TLR) in human leukocytes: selective expression of TLR3 in dendritic cells. J Immunol 2000; 164:5998-6004.
Hoshino K, Takeuchi O, Kawai T, Sanjo H, Ogawa T, Takeda Y et al. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 1999; 162:3749-52.
Byrd-Leifer CA, Block EF, Takeda K, Akira S, Ding A. The role of MyD88 and TLR4 in the LPS-mimetic activity of Taxol. Eur J Immunol 2001; 31:2448-2457.
Kurt-Jones EA, Popova L, Kwinn L, Haynes LM, Jones LP, Tripp RA et al. Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat Immunol 2000; 1:398-401.
Rassa JC, Meyers JL, Zhang Y, Kudaravalli R, Ross SR. Murine retroviruses activate B cells via interaction with toll-like receptor 4. Proc Natl Acad Sci U S A 2002; 99:2281-2286.
Bulut Y, Faure E, Thomas L, Karahashi H, Michelsen KS, Equils O et al. Chlamydial heat shock protein 60 activates macrophages and endothelial cells through Toll-like receptor 4 and MD2 in a MyD88-dependent pathway. J Immunol 2002; 168:1435-1440.
Ohashi K, Burkart V, Flohe S, Kolb H. Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J Immunol 2000; 164:558-561.
Dybdahl B, Wahba A, Lien E, Flo TH, Waage A, Qureshi N et al. Inflammatory response after open heart surgery: release of heat-shock protein 70 and signaling through toll-like receptor-4. Circulation 2002; 105:685-690.
Okamura Y, Watari M, Jerud ES, Young DW, Ishizaka ST, Rose J et al. The extra domain A of fibronectin activates Toll-like receptor 4. J Biol Chem 2001; 276:10229-10233.
Termeer C, Benedix F, Sleeman J, Fieber C, Voith U, Ahrens T et al. Oligosaccharides of Hyaluronan activate dendritic cells via toll-like receptor 4. J Exp Med 2002; 195:99-111.
Johnson GB, Brunn GJ, Kodaira Y, Platt JL. Receptor-mediated monitoring of tissue well-being via detection of soluble heparan sulfate by Toll-like receptor 4. J Immunol 2002; 168:5233-5239.
Smiley ST, King JA, Hancock WW. Fibrinogen stimulates macrophage chemokine secretion through toll-like receptor 4. J Immunol 2001; 167:2887-2894.
Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 2001; 410:1099-1103.
Gewirtz AT, Navas TA, Lyons S, Godowski PJ, Madara JL. Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J Immunol 2001; 167:1882-1885.
Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L et al. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 2002; 415:977-983.
Takeuchi O, Kawai T, Muhlradt PF, Morr M, Radolf JD, Zychlinsky A et al. Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int Immunol 2001; 13:933-940.
Ozinsky A, Underhill DM, Fontenot JD, Hajjar AM, Smith KD, Wilson CB et al. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc Natl Acad Sci U S A 2000; 97:13766-13771.
Hemmi H, Kaisho T, Takeuchi O, Sato S, Sanjo H, Hoshino K et al. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 2002; 3:196-200.
Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 2004; 303:1526-1529.
Diebold SS, Kaisho T, Hemmi H, Akira S, Reis ESC. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science. 2004; 303:1529-1531.
O’Neill LA. Immunology. After the toll rush. Science 2004; 303:1481-1482.
Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H et al. A Toll-like receptor recognizes bacterial DNA. Nature 2000; 408:740-745.
Ahmad-Nejad P, Hacker H, Rutz M, Bauer S, Vabulas RM, Wagner H. Bacterial CpG-DNA and lipopolysaccharides activate Toll-like receptors at distinct cellular compartments. Eur J Immunol 2002; 32:1958-1968.
Brown WC, Corral RS. Stimulation of B lymphocytes, macrophages, and dendritic cells by protozoan DNA. Microbes Infect 2002; 4:969-974.
Sun S, Beard C, Jaenisch R, Jones P, Sprent J. Mitogenicity of DNA from different organisms for murine B cells. J Immunol 1997; 159:3119-3125.
Hornung V, Rothenfusser S, Britsch S, Krug A, Jahrsdorfer B, Giese T et al. Quantitative expression of toll-like receptor 1-10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J Immunol 2002; 168:4531-4537.
Rachmilewitz D, Katakura K, Karmeli F, Hayashi T, Reinus C, Rudensky B et al. Toll-like receptor 9 signaling mediates the anti-inflammatory effects of probiotics in murine experimental colitis. Gastroenterology 2004; 126:520-528.
Bourke E, Bosisio D, Golay J, Polentarutti N, Mantovani A. The toll-like receptor repertoire of human B lymphocytes: inducible and selective expression of TLR9 and TLR10 in normal and transformed cells. Blood 2003; 102:956-963.
Heine H, Lien E. Toll-like receptors and their function in innate and adaptive immunity. Int Arch Allergy Immunol 2003; 130:180-192.
Underhill DM, Ozinsky A. Toll-like receptors: key mediators of microbe detection. Curr Opin Immunol 2002; 14:103-110.
Fukui A, Inoue N, Matsumoto M, Nomura M, Yamada K, Matsuda Y et al. Molecular cloning and functional characterization of chicken toll-like receptors. A single chicken toll covers multiple molecular patterns. J Biol Chem. 2001; 276:47143-47149.
Dil N, Qureshi MA. Differential expression of inducible nitric oxide synthase is associated with differential Toll-like receptor-4 expression in chicken macrophages from different genetic backgrounds. Vet Immunol Immunopathol 2002; 84:191-207.
Dil N, Qureshi MA. Involvement of lipopolysaccharide related receptors and nuclear factor kappa B in differential expression of inducible nitric oxide synthase in chicken macrophages from different genetic backgrounds. Vet Immunol Immunopathol 2002; 88:149-161.
Farnell MB, Crippen TL, He H, Swaggerty CL, Kogut MH. Oxidative burst mediated by toll like receptors (TLR) and CD14 on avian heterophils stimulated with bacterial toll agonists. Dev Comp Immunol 2003; 27:423-429.
Werling D, Hope JC, Howard CJ, Jungi TW. Differential production of cytokines, reactive oxygen and nitrogen by bovine macrophages and dendritic cells stimulated with Toll-like receptor agonists. Immunology 2004; 111:41-52.
Shoda LK, Kegerreis KA, Suarez CE, Roditi I, Corral RS, Bertot GM et al. DNA from protozoan parasites Babesia bovis, Trypanosoma cruzi, and T. brucei is mitogenic for B lymphocytes and stimulates macrophage expression of interleukin-12, tumor necrosis factor alpha, and nitric oxide. Infect Immun 2001; 69:2162-2171.
Zhang Y, Palmer GH, Abbott JR, Howard CJ, Hope JC, Brown WC. CpG ODN 2006 and IL-12 are comparable for priming Th1 lymphocyte and IgG responses in cattle immunized with a rickettsial outer membrane protein in alum. Vaccine 2003; 21:3307-3318.
Zhang Y, Shoda LK, Brayton KA, Estes DM, Palmer GH, Brown WC et al. Induction of interleukin-6 and interleukin-12 in bovine B lymphocytes, monocytes, and macrophages by a CpG oligodeoxynucleotide (ODN 2059) containing the GTCGTT motif. J Interferon Cytokine Res 2001; 21:871-881.
Werling D, Jungi TW. TOLL-like receptors linking innate and adaptive immune response. Vet Immunol Immunopathol 2003; 91:1-12.
Liu Y, Wang Y, Yamakuchi M, Isowaki S, Nagata E, Kanmura Y et al. Upregulation of toll-like receptor 2 gene expression in macrophage response to peptidoglycan and high concentration of lipopolysaccharide is involved in NF-kappa b activation. Infect Immun 2001; 69:2788-2796.
Shimosato T, Kitazawa H, Katoh S, Tomioka Y, Karima R, Ueha S et al. Swine Toll-like receptor 9(1) recognizes CpG motifs of human cell stimulant. Biochim Biophys Acta 2003; 1627:56-61.
Asahina Y, Yoshioka N, Kano R, Moritomo T, Hasegawa A. Full-length cDNA cloning of Toll-like receptor 4 in dogs and cats. Vet Immunol Immunopathol 2003; 96:159-167.
Zarember KA, Godowski PJ. Tissue expression of human Toll-like receptors and differential regulation of Toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines. J Immunol 2002; 168:554-561.
Singh M, O’Hagan DT. Recent advances in veterinary vaccine adjuvants. Int J Parasitol 2003; 33:469-478.
Schnare M, Barton GM, Holt AC, Takeda K, Akira S, Medzhitov R. Toll-like receptors control activation of adaptive immune responses. Nat Immunol 2001; 2:947-950.
Lipford GB, Heeg K, Wagner H. Bacterial DNA as immune cell activator. Trends Microbiol 1998; 6:496-500.
Krieg AM. Immune effects and mechanisms of action of CpG motifs. Vaccine 2000; 19:618-622.
Azuma I, Seya T. Development of immunoadjuvants for immunotherapy of cancer. Int Immunopharmacol 2001; 1:1249-1259.
Tsuji S, Matsumoto M, Takeuchi O, Akira S, Azuma I, Hayashi A et al. Maturation of human dendritic cells by cell wall skeleton of Mycobacterium bovis bacillus Calmette-Guerin: involvement of toll-like receptors. Infect Immun 2000; 68:6883-6890.
Evans JT, Cluff CW, Johnson DA, Lacy MJ, Persing DH, Baldridge JR. Enhancement of antigen-specific immunity via the TLR4 ligands MPL adjuvant and Ribi.529. Expert Rev Vaccines 2003; 2:219-229.
Jiang ZH, Koganty RR. Synthetic vaccines: the role of adjuvants in immune targeting. Curr Med Chem 2003; 10:1423-1439.
Matsuguchi T, Takagi A, Matsuzaki T, Nagaoka M, Ishikawa K, Yokokura T et al. Lipoteichoic acids from Lactobacillus strains elicit strong tumor necrosis factor alpha-inducing activities in macrophages through Toll-like receptor 2. Clin Diagn Lab Immunol 2003; 10:259-266.
Bautista Garfias C, Arriola M, Trejo L, Ixta O, Rojas RE. Comparación entre el efecto de Lactobacillus casei y el de una vacuna comercial en pollos contra la coccidiosis. Tec Pecu Mex 2003; 41:317-327.
Bautista Garfias C, Posadas A, Ixta O. Inmunización de ratones BALB/c con un antígeno de larvas musculares de Trichinella spiralis utilizando Lactobacillus casei como adyuvante. Tec Pecu Mex 2004; 35:359-368