2014, Número 5
<< Anterior Siguiente >>
Gac Med Mex 2014; 150 (5)
La vía auditiva: niveles de integración de la información y principales neurotransmisores
Hernández-Zamora E, Poblano A
Idioma: Español
Referencias bibliográficas: 39
Paginas: 450-460
Archivo PDF: 294.70 Kb.
RESUMEN
En este documento se abordan los aspectos anatómicos, fisiológicos y neuroquímicos de la vía auditiva central (VAC),
desde el oído interno, el tronco cerebral y el tálamo hasta la corteza auditiva (CA) temporal. Se dan las características
del ganglio espiral de Corti (GEC), el nervio auditivo (NA), los núcleos cocleares (NC), el complejo olivar superior
(COS), el lemnisco lateral (LL), el colículo inferior (CI), el cuerpo geniculado medial y la CA, incluyendo la vía auditiva
eferente (VAE). Se describe cómo los impulsos eléctricos viajan a través de los axones, lo que permite que los iones
entren a las neuronas y liberen vesículas con neurotransmisores (NT) al espacio sináptico. Los NT modifican el
funcionamiento de las células al unirse a receptores específicos en la siguiente neurona; la unión NT-receptor provoca
la entrada de iones, a través de sitios Gap, lo que genera un potencial postsináptico que se propaga a lo largo de toda
la VAC. Además, los efectos de los NT no se limitan a la transmisión, sino que como agentes tróficos promueven la
formación de nuevas redes neurales. Aún no se comprenden completamente la anatomía, la fisiología, los aspectos
neuroquímicos y los diversos tipos de sinapsis, para entender la organización de la VAC, pero continúan bajo investigación
por su relevancia para el tratamiento de diversas alteraciones auditivas centrales.
REFERENCIAS (EN ESTE ARTÍCULO)
Musiek FE, Baran JA. Neuroanatomy, neurophysiology, and central auditory assessment. Part I: Brain stem. Ear Hear. 1986;7(4):207-19.
Musiek FE. Neuroanatomy, neurophysiology, and central auditory assessment. Part II: The cerebrum. Ear Hear. 1986;7(5):283-94.
Hinojosa R, Sligsohn R, Lerner SA. Ganglion cell counts in the cochleae of patients, with normal audiograms. Acta Otolaryngol. 1985;99 (1-2):8-13.
Spoendlin HH, Schrott A. Quantitative evaluation of the human cochlear nerve. Acta Otolaryngol Suppl. 1990;470:61-9.
Ota N, Kimura H. Ultraestructural study of the human spiral ganglion. Acta Otolaryngol. 1980;89(1-2):53-62.
Bourk TR, Mielcarz JP. Norris BE. Tonotopic organization of anteroventral cochlear nucleus of the cat. Hear Res. 1981;4(3-4):215-41.
Cant NB. Identificación of cell types in the anteroventral cochlear nucleus that proyect to the inferior colliculus. Neurosci Lett. 1982;32(3):241-6.
Bazwinsky I, Hilbig H, Bidmon HJ, Rübsamen R. Characterization of the human superior olivary complex by calcium binding proteins and neurofilament H (SMI-32). J Comp Neurol. 2003;456(3):292-303.
Cho TH, Fischer C, Nighoghossian N, Hermier M, Sindou M, Mauguière F. Auditory and electrophysiological patterns of a unilateral lesion of the lateral lemniscus. Audiol Neurootol. 2005;10(3):153-8.
Glendenning KK, Brunso JK, Thompson GC, Masterton RB. Ascending auditory afferents to the nuclei of the lateral lemniscus. J Comp Neurol. 1981;197(4):673-703.
Braun M. Auditory midbrain laminar structure appears adapted to f0 extraction: further evidence and implications of the double critical bandwidth. Hear Res. 1999;129(1-2)71-82.
Winer JA. The human medial geniculate body. Hear Res. 1984;15(3): 225-47.
Liem F, Zaehle T, Burkhard A, Jäncke L, Meyer M. Cortical thickness of supratemporal plane predicts auditory N1 amplitude. Neuroreport. 2012;23(17):1026-30.
Musiek FE. Neuroanatomy, neurophysiology, and central auditory assessment. Part III: Corpus callosum and efferent pathway. Ear Hear. 1986;7(6):349-58.
Poblano A, Garza-Morales S, Ibarra-Puig J. Utilidad de los potenciales provocados auditivos del tallo cerebral en la evaluación del recién nacido. Bol Med Hosp Infant Mex. 1995;52:262-70.
Korczak P, Smart J, Delgado R, Strobel TM, Bradford C. Auditory steadystate responses. J Am Acad Audiol. 2012;23(3):146-70.
Joris PX, Bergevin C, Kalluri R, et al. Frequency selectivity in Old-World monkeys corroborates sharp cochlear tuning in humans. Proc Natl Acad Sci USA. 2011;108(42):17516-20.
Wallace MN, Anderson LA, Palmer AR. Phase-locked responses to pure tones in the auditory thalamus. J Neurophysiol. 2007;98(4):1941-52.
Grothe B, Koch U. Dynamics of binaural processing in the mammalian sound localization pathway--the role of GABA(B) receptors. Hear Res. 2011;279(1-2):43-50.
Starr A, Hamilton AE. Correlation between confirmed sites of neurological lesions and abnormalities of far-field auditory brainstem responses. Electroencephalogr Clin Neurophysiol. 1976;41(6):595-608.
Dean C, Felder G, Kim AH. Analysis of speech perception outcomes among patients receiving cochlear implants with auditory neuropathy spectrum disorder. Otol Neurotol. 2013;34(9):1610-14.
Ren D. Sodium leak channels in neuronal excitability and rhythmic behaviors. Neuron. 2011;72(6):899-911.
Me,se G, Richard G, White TW. Gap junctions: basic structure and function. J Invest Dermatol. 2007;127(11):2516-24.
Hunter C, Doi K, Wenthold RJ. Neurotransmission in the auditory system. Othorinolaryngol Clin North Am. 1992;25(5):1027-52.
Fex J, Altschuler RA. Neurotransmitter-related immunocytochemistry of the organ of Corti. Hear Res. 1986;22:249-63.
Lustig LR. Nicotinic acetylcholine receptor structure and function in the efferent auditory system. Anat Rec A Discov Mol Cell Evol Biol. 2006;288(4):424-34.
Elgoyhen AB, Katz E. The efferent medial olivocochlear-hair cell synapse. J Physiol Paris. 2012;106(1-2):47-56.
Fudge JL, Emiliano AB. The extended amygdala and the dopamine system: another piece of the dopamine puzzle. J Neuropsychiatry Clin Neurosci. 2003;15(3):306-16.
Doleviczényi Z, Halmos G, Répássy G, Vizi ES, Zelles T, Lendvai B. Cochlear dopamine release is modulated by group II metabotropic glutamate receptors via GABAergic neurotransmission. Neurosci Lett. 2005;385(2):93-8.
Hurley LM, Hall IC. Context-dependent modulation of auditory processing by serotonin. Hear Res. 2011;279(1-2):74-84.
Manjarrez G, Hernandez-Zamora E, Robles A, Hernandez J. N1/P2 component of auditory evoked potential reflect changes of the brain serotonin biosynthesis in rats. Nutr Neurosci. 2005;8(4):213-8.
Gabriel Manjarrez G, Hernández Zamora E, Robles OA, González RM, Hernández RJ. Developmental impairment of auditory evoked N1/P2 component in rats undernourished in utero: its relation to brain serotonin activity. Brain Res Dev Brain Res. 2001;127(2):149-55.
Usami SI, Takumi Y, Matsubara A, Fujita S, Ottersen OP. Neurotransmission in the vestibular endorgans--glutamatergic transmission in the afferent synapses of hair cells. Biol Sci Space. 2001;15(4):367-70.
Shore SE. Plasticity of somatosensory inputs to the cochlear nucleus--implications for tinnitus. Hear Res. 2011;281(1-2):38-46.
Milenkovi´c I, Rübsamen R. Development of the chloride homeostasis in the auditory brainstem. Physiol Res. 2011;60 Suppl 1:S15-27.
Winer JA, Lee CC. The distributed auditory cortex. Hear Res. 2007;229 (1-2):3-13.
Caspary DM, Ling L, Turner JG, Hughes LF. Inhibitory neurotransmission, plasticity and aging in the mammalian central auditory system. J Exp Biol. 2008;211(Pt 11):1781-91.
Pollak GD, Burger RM, Klug A. Dissecting the circuitry of the auditory system. Trends Neurosci. 2003;26(1):33-9.
Kim SH, Marcus DC. Regulation of sodium transport in the inner ear. Hear Res. 2011;280(1-2):21-9.