2014, Número 2
<< Anterior Siguiente >>
Rev Hosp Jua Mex 2014; 81 (2)
Comparison of modeling techniques used to characterize moderate and heavy phase two recovery Vo2 kinetics in old men
Padilla-Pérez J
Idioma: Español
Referencias bibliográficas: 34
Paginas: 92-103
Archivo PDF: 272.69 Kb.
RESUMEN
Se evaluó la cinética de absorción pulmonar de oxígeno (VO
2) off-transitoria (recuperación del ejercicio) de las respuestas
de intensidades moderada (M) e intensa (H) al ejercicio submáximo (Sub = M + H) al comparar entre varias
estrategias de modelado comunes para evaluar el mejor modelo de ajuste exponencial. El parámetro estimado de la fase
2 de VO
2 fue la constante de tiempo (off-τΦ
2VO
2) en hombres adultos mayores [n = 9; 72 (± 4) años; media (± sd)]. Una
prueba tipo rampa (12 W•min
-1) hasta el límite de tolerancia para determinar el VO
2pico y el umbral estimado de lactato
(V
ET). Ejercicio de ciclo de carga constante a 50 W (M) y a tasas de trabajo correspondientes a 80%V
ET (M) y a 120%V
ET
(H). Cada una duró 6 min precedidos una línea de base (LB) de 6 min de ciclismo de 20 W, se repitió cuatro a seis veces.
VO
2 se midió de respiración a respiración. Pedaleando a 60 rpm, la prueba inició con una LB del último minuto del final
del ejercicio, seguido de una disminución de potencia (sin advertir al sujeto) de vuelta al pedaleo sin resistencia por 6
min de recuperación (RE). Datos de cada transición se filtraron, interpolaron a intervalos de 1 s y su ensamblado
promedio produjo una respuesta única para cada sujeto e intensidad. Las respuestas se modelaron con regresión no
lineal y modelos exponenciales de uno (1C), dos (2C) y tres (3C) componentes (tiempo de retraso) de ventanas de ajuste
diferente. Off-Φ
2VO
2 Sub fue fisiológica y estadísticamente bien descrita, y cinéticamente distinguida (off-τ
2VO
2) por las
funciones de doble exponencial dos componentes (2C) para M (
aτ
2 = 56 ± 14 s) y triple exponencial tres componentes
(3C) (
bτ
2 = 39 ± 7,
agbP‹0.05) para H en hombres adultos mayores.
REFERENCIAS (EN ESTE ARTÍCULO)
Poole DC, Jones AM. Oxygen Uptake Kinetics. Compr Physiol 2012; 2(2): 933-96.
Cunningham DA, Croix CM, Paterson DH, Ozyener F, Whipp BJ. The off-transient pulmonary oxygen uptake (O2) kinetics following attainment of a particular O2 during heavy-intensity exercise in humans. Exp Physiol 2000; 85(3): 339-47.
Chilibeck PD, Paterson DH, McCreary CR, Marsh GD, Cunningham DA, Thompson RT. The effects of age on kinetics of oxygen uptake and phosphocreatine in humans during exercise. Exp Physiol 1998; 83(1): 107-17.
Behnke BJ, Ferreira LF, McDonough PJ, Musch TI, Poole DC. Recovery dynamics of skeletal muscle oxygen uptake during the exercise off-transient. Respir Physiol Neurobiol 2009; 168(3): 254-60.
Whipp BJ. The bioenergetics and gas exchange basis of exercise testing. Clin Chest Med 1994; 15: 173-92.
Simões RP, Bonjorno JC Jr, Beltrame T, Catai AM, Arena R, Borghi-Silva A. Slower heart rate and oxygen consumption kinetic responses in the on- and off-transient during a discontinuous incremental exercise: effects of aging. Braz J Phys Ther 2013; 17(1): 69-76.
Gerbino A, Ward SA, Whipp B J. Effects of prior exercise on pulmonary gas-exchange kinetics during high-intensity exercise in humans. J Appl Physiol 1996; 80: 99-107.
Paterson DH, Whipp BJ. Asymmetries of oxygen uptake transients at the on- and offset of heavy exercise in humans. J Physiol 1991; 443: 575-86.
Bangsbo YJ, Gollnick PD, Graham TE, Juel C, Kiens B, Mizuno M, Saltin B. Anaerobic energy production and 02 deficit-debt relationship during exhaustive exercise in humans. J Physiol 1990; 422: 539-59.
Gore CJ, Withers RI. Effects of exercise intensity and duration on postexercise metabolism. J Appl Physiol 1990; 68: 2362-8.
Short KR, Sedlock DA. Excess postexercise oxygen consumption and recovery rate in trained and untrained subjects. J Appl Physiol 1997; 83(1): 153-9.
Margaria R, Edwards HT, Dill DB. The possible mechanisms of contracting and paying the oxygen debt and the role of lactic acid in muscular contraction. Amer J Physiol 1933; 106: 689-715.
Davies CTM, Diprampero PE, Cerretelli P. Kinetics of cardiac output and respiratory gas exchange during exercise and recovery. J Appl Physiol 1972; 32: 618-25.
Whipp BJ, Ward SA, Rossiter HB. Pulmonary O2 uptake during exercise: conflating muscular and cardiovascular responses. Med Sci Sports Exerc 2005; 37: 1574-85.
Linnarsson, D. Dynamics of pulmonary gas exchange and heart rate changes at the start and end of exercise. Acta Physiol Scand 1974; suppl. 414: 1-68.
Hill AV, Lupton H. Muscular exercise, lactic acid and the supply and utilization of oxygen. Q J Med 1923; 16: 135-71.
Özyener F, Rossiter HB, Ward SA, Whipp BJ. Influence of exercise intensity on the on- and offtransient kinetics of pulmonary oxygen uptake in humans. J Physiol 2001; 533;3: 891-902.
Fukuoka Y, Grassi B, Conti M, Guiducci D, Sutti M, Marconi C, Cerretelli P. Early effects of exercise training on on- and offkinetics in 50-year-old subjects. Pflugers Arch 2002; 443(5-6): 690-7.
Wasserman K, Hansen JE, Sue DY, Whipp BJ. Principles of exercise testing and interpretation. Philadelphia: Lea Febiger; 1987.
Paterson DH, Cunningham DA, Babcock MA. Oxygen kinetics in the elderly. Respiratory Control: A Modelling Perspective. In: Swanson GD, Grodins FS, Hughson RL (eds.). New York: Plenum Press; 1989, p. 171-8.
Padilla JP, Kowalchuk JM, Taylor AW, Paterson DH. Comparison of model estimates of phase two on-transient O2 uptake kinetics during submaximal exercise in old men. Rev Hosp Jua Mex 2008; 75(3): 151-65.
Beaver WL, Lamarra N, Wasserman K. Breath-by-breath measurements of true alveolar gas exchange. J Appl Physiol 1981; 51: 1662-75.
Padilla JP. Slow age-related phase ii on-transient O2 kinetics heart rate kinetics during ramp exercise in adult men. Rev Hosp Jua Mex 2010; 77(4): 245-54.
Bell C, Paterson DH, Kowalchuk JM, Padilla J, Cunningham DA. A comparition of modelling techniques used to characterize oxygen uptake kinetics during the on-transient of exercise ”muscle”. Exp Physiol 2001; 86(5): 667-76.
Motulsky HJ, Ransnas A. Fitting curves to data using nonlinear regression: a practical and nonmathematical review. FASEB J 1987; 1: 365-74.
Zar JH. Biostatistical Analysis. 3rd Ed. New Jersey: Prentice Hall, Inc., U.S.A.; 1996.
Marquardt DW. An algorithm for least-squares estimation of nonlinear parameters. J Soc Induct Appl Math 1963; 11(2): 431-41.
Gaesser GA, Brooks GA. Metabolic basis of excess postexercise oxygen consumption: a review. Med Sci Sports Exerc 1984; 16(1): 29-43.
Padilla JP. Comparison of modelling techniques used to characterize moderate and heavy phase two recovery O2 kinetics in young men. Rev Hosp Jua Mex 2012; 79(3): 159-73.
Casaburi R, Storer TW, Ben Dov I, Wasserman K Effect of endurance training on possible determinants of O2 during heavy exercise. J Appl Physiol 1987;62:199-207.
Brittain CJ, Rossiter HB, Kowalchuk JM, Whipp BJ. Effect of prior metabolic rate on the kinetics of oxygen uptake during moderate-intensity exercise. Eur J Appl Physiol 2001; 86: 125-34.
Barstow TJ, Molé PA. Linear and nonlinear characteristics of oxygen uptake during heavy exercise. J Appl Physiol 1991; 71: 2099-106.
Tschakovsky ME, Hughson RL. Interaction of factors determining oxygen uptake at the onset of exercise. J Appl Physiol 1999; 86: 1101-13.
Perrey S, Candau R, Borrani F, Millet GY, Rouillon JD. Recovery kinetics of oxygen uptake following severe-intensity exercise in runners. J Sports Med Phys Fitness 2002; 42(4): 381-8.