2005, Número 1
<< Anterior Siguiente >>
Rev Mex Ing Biomed 2005; 26 (1)
Desarrollo de un litotriptor extracorporal más eficiente
Fernández EF, Mehling LAM, Zendejas MH, Tostado CE, Paredes SMI
Idioma: Español
Referencias bibliográficas: 24
Paginas: 7-15
Archivo PDF: 238.35 Kb.
RESUMEN
Se describe el diseño, el desarrollo y la evaluación preliminar de un generador de ondas de choque novedoso, destinado a mejorar la eficiencia de fractura de cálculos renales durante tratamientos de litotripsia extracorporal. A diferencia de los equipos clínicos (litotriptores) existentes en el mercado, el sistema descrito genera, no sólo una onda de choque por evento, sino dos ondas sucesivas, separadas un tiempo muy corto (variable entre 50 y 950
ms). Con ello se aumenta la energía de colapso de las burbujas de cavitación, mecanismo que participa en la fractura de los cálculos. Se presentan mediciones de presión, pruebas de fractura de modelos de cálculos renales
in vitro, así como una comparación
in vivo del daño renal causado por el nuevo generador contra el daño ocasionado por el sistema convencional. Los resultados indican que este dispositivo es más eficiente para fracturar cálculos renales y no genera más daño a los tejidos renales que los sistemas convencionales. A reserva de hacer un mayor número de ensayos
in vivo, el sistema desarrollado puede ser empleado para aumentar la eficiencia de tratamientos de litotripsia extracorporal. Su implementación en litotriptores existentes no sería complicada.
REFERENCIAS (EN ESTE ARTÍCULO)
Delius M. Medical application and bioeffects of extracorporeal shock waves. Shock Waves, 1994; 4: 55-72.
Loske AM. Applications of shock waves in medicine. In: Ben-Dor G, Elperin T, Igra O, Lifshitz, A, editors, Handbook of Shock Waves, Academic Press (San Diego, CA), 2001: 415-440.
Lingeman JE, Safar FS. Lithotripsy systems. In: Smith AD, Badlani GH, Bagley DH, Clayman RV, Jorda GH, Kavoussi LR, Lingeman JE, Preminger GM, Segura JW, editors, Smith´s Textbook of Endourology, Quality Medical Publishers, Inc. (St. Louis), 1996: 553-589.
Loske AM, Prieto FE. Fundamentos Técnicos de Litotripsia Extracorporal. JGH Editores, Ciencia y Cultura Latinoamérica, S.A. de C.V. (México), 1999.
Grenabo L, Lindquist K, Adami HO, Bergstrom R, Pettersson S. Extracorporeal shock wave lithotripsy for the treatment of renal stones. Arch Surg 1997; 132: 20-25.
Evan AP, Willis LR, Lingeman JE, McAteer JA. Renal trauma and the risk of long-term complications in shock wave lithotripsy. Nephron, 1998; 78: 1-7.
Lokhandwalla M, Sturtevant B. Fracture mechanics model of stone comminution in ESWL and implications for tissue damage. Phys Med Biol 2000; 45: 1923-1949.
Eisenmenger W. The mechanism of stone fragmentation in ESWL. Ultrasound Med & Biol 2001; 27: 683-693.
Crum LA. Surface oscillations and jet development in pulsating bubbles. J Physique 1979; 40: 285-287.
Prieto FE, Loske AM. Multifocal Composite Reflectors to Concentrate Shock Waves. Patente internacional P.C.T./MX 95/00008, 1995.
Bailey MR. Control of acoustic cavitation with application to lithotripsy. Technical Report ARL-TR-97-1, University of Texas at Austin, Applied Research Laboratories (Austin, TX), 1997.
Sokolov DL, Bailey MR, Crum LA. Use of dual-pulse lithotripter to generate a localized and intensified cavitation field. J Acoust Soc Am 2001; 110: 1685-1695.
Prieto FE, Loske AM. Zusammengesetzte Multifokalreflektoren zur Konzentration von Stosswellen. Patente alemana DE 195 81 913.6, 1998.
Prieto FE, Loske AM. Bifocal reflector for electrohydraulic lithotripters. J Endourol 1999; 13(2): 65-75.
Zhou Y, Zhong P. Suppression of large intraluminal bubble expansion in shock wave lithotripsy without compromising stone comminution: Refinement of relector geometry. J Acoust Soc Am 2003; 113: 586-597.
Loske AM, Prieto FE. Improving underwater shock wave focusing efficiency. In: Pak CYC, Resnick MI, Preminger GM, editors, Urolithiasis, Millet The Printer (Dallas, TX), 1996: 401-402.
Fernández F, Loske AM, van Cauwelaert J, Prieto FE. Electronic device to improve the efficiency of extracorporeal lithotripters. J Appl Res & Technol 2004; 2(2): 170-178.
Conover WJ. Practical Nonparametric Statistics. John Wiley & Sons (New York), 1999.
Carstensen EL, Gracewski S, Daleki D. The search for cavitation in vivo. Ultrasound Med & Biol 2000; 26: 1377-1385.
Zhong P, Cioanta I, Cocks FH, Preminger GM. Inertial cavitation and associated acoustic emission produced during electrohydraulic shock wave lithotripsy. J Acoust Soc Am 1997; 101: 2940-2950.
Karalezli G, Gögüs O, Bedük Y, Kökünslu C, Sarica K, Kutsal O. Histopathologic effects of ESWL on rabbit kidney. Urol Res 1993; 21: 67-70.
Morris JS, Husmann DA, Wilson WT, Denstedt J, Fulgham PF, Clayman RV et al. A comparison of renal damage induced by varying modes of shock wave generation. J Urol 1991; 145: 864-867.
Van Arsdalen KN, Kurzweil S, Smith J, Levin RM. Effect of lithotripsy on immature rabbit bone and kidney development. J Urol 1991; 146: 213-216.
Alvarez UM, Loske AM, Castaño-Tostado E, Prieto FE. Inactivation of Escherichia coli O157: H7, Salmonella Typhimurium and Listeria monocytogenes by underwater shock waves. Innov Food Science & Emerg Technol 2004; 5(4): 459-463.