2014, Número 2
<< Anterior Siguiente >>
Rev Invest Clin 2014; 66 (2)
Aspectos fisiopatológicos de los cotransportadores de K+:Cl-
Mercado A, Melo Z
Idioma: Español
Referencias bibliográficas: 54
Paginas: 173-180
Archivo PDF: 212.70 Kb.
RESUMEN
Los cotransportadores de K
+:Cl
- o KCCs son proteínas de
membrana que transportan K
+ y Cl
- sin generar cambios en el
potencial transmembranal. Pertenecen a la familia SLC12
(Solute Carrier Family 12) de cotransportadores electroneutros
acoplados a cloro (CCC) y son transportadores de iones
activos secundarios debido a que utilizan los gradientes establecidos
por el transporte activo primario a través de la ATPasa
de Na
+/K
+. Aunque se han identificado nueve miembros de
esta familia, a la fecha sólo se han caracterizado siete genes,
entre los cuales se encuentran dos cotransportadores de
Na
+:K
+:2Cl
- sensibles a diuréticos de asa (NKCC1/NKCC2), el
cotransportador de Na
+:Cl
- sensible a tiazidas (NCC) y los cotransportadores
de K
+:Cl
- (KCC) que son codificados por al
menos cuatro genes homólogos (KCC1-KCC4), de los cuales
se generan isoformas por empalme alternativo de exones.
KCC1 es una forma ubicua, KCC3 y KCC4 se expresan ampliamente,
en particular en células epiteliales, mientras que
KCC2 se restringe al sistema nervioso central (SNC). Estos
cotransportadores juegan un papel esencial en muchos procesos
fisiológicos, tales como la regulación del volumen celular,
el transporte transepitelial de sal y la regulación de la concentración
de cloro intraneuronal. Esta revisión tiene el objetivo
de mostrar de manera breve las características moleculares
así como la importancia fisiológica y el papel de las diferentes
isoformas de los KCCs en determinadas patologías.
REFERENCIAS (EN ESTE ARTÍCULO)
Ellison DH, Velazquez H, Wright FS. Stimulation of distal potassium secretion by low lumen chloride in the presence of barium. Am J Physiol 1985; 248: F638-F649.
Yan GX, Chen J, Yamada KA, Kleber AG, Corr PB. Contribution of shrinkage of extracellular space to extracellular K+ accumulation in myocardial ischaemia of the rabbit. J Physiol (Lond) 1996; 490(Pt. 1): 215-28.
Amlal H, Paillard M, Bichara M. Cl(-)-dependent NH4+ transport mechanisms in medullary thick ascending limb cells. Am J Physiol 1994; 267: C1607-C1615.
Rivera C, Voipio J, Payne JA, Ruusuvuori E, Lahtinen H, Lamsa K, Pirvola U, et al. The K+/Cl- co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 1999; 397: 251-5.
Lang F, Busch GL, Ritter M, Volkl H, Waldegger S, Gulbins E, Haussinger D. Functional significance of cell volume regulatory mechanisms. Physiol Rev 1998; 78: 247-306.
Gamba G. Molecular physiology and pathophysiology of the electroneutral cation-chloride cotransporters. Physiol Rev 2005; 85: 423-93.
Mercado A, Song L, Vazquez N, Mount DB, Gamba G. Functional Comparison of the K+-Cl- Cotransporters KCC1 and KCC4. J Biol Chem 2000; 275: 30326-34.
Pacheco-Alvarez D, Vazquez N, Castaneda-Bueno M, los Heros P, Cortes-Gonzalez C, Moreno E, Meade P, et al. WNK3- SPAK interaction is required for the modulation of NCC and other members of the SLC12 family. Cell Physiol Biochem 2012; 29: 291-302.
Rinehart J, Vazquez N, Kahle KT, Hodson CA, Ring AM, Gulcicek EE, Louvi A, et al. WNK2 is a novel regulator of essential neuronal cation-chloride cotransporters. J Biol Chem 2011; 286: 30171-80.
Cruz-Rangel S, Melo Z, Vazquez N, Meade P, Bobadilla NA, Pasantes-Morales H, Gamba G, et al. Similar effects of all WNK3 variants on SLC12 cotransporters. Am J Physiol Cell Physiol 2011; 301: C601-C608.
Bergeron MJ, Gagnon E, Wallendorff B, Lapointe JY, Isenring P. Ammonium transport and pH regulation by K+-Cl- cotransporters. Am J Physiol Renal Physiol 2003; 285: F68-F78.
Gillen CM, Brill S, Payne JA, Forbush IB. Molecular cloning and functional expression of the K-Cl cotransporter from rabbit, rat and human. A new member of the cation-chloride cotransporter family. J Biol Chem 1996; 271: 16237-44.
Liapis H, Nag M, Kaji DM. K-Cl cotransporter expression in the human kidney. Am J Physiol 1998; 275: C1432-C1437.
Lauf PK, Bauer J, Adragna NC, Fujise H, Zade-Oppen AMM, Ryu KH, Delpire E. Erythrocyte K-Cl cotransport: Properties and regulation. Am J Physiol Cell Physiol 1992; 263: C917- C932.
Rust MB, Alper SL, Rudhard Y, Shmukler BE, Vicente R, Brugnara C, Trudel M, Jentsch TJ, et al. Disruption of erythroid K-Cl cotransporters alters erythrocyte volume and partially rescues erythrocyte dehydration in SAD mice. J Clin Invest 2007; 117: 1708-17.
Uvarov P, Ludwig A, Markkanen M, Pruunsild P, Kaila K, Delpire E, Timmusk T, et al. A novel N-terminal isoform of the neuron-specific K-Cl cotransporter KCC2. J Biol Chem 2007; 282: 30570-6.
Jarolimek W, Lewen A, Misgeld U. A furosemide-sensitive K+- Cl- cotransporter counteracts intracellular Cl- accumulation and depletion in cultured rat midbrain neurons. J Neuroscience 1999; 19: 4695-704.
Lu J, Karadsheh M, Delpire E. Developmental regulation of the neuronal-specific isoform of K-Cl cotransporter KCC2 in postnatal rat brains. J Neurobiol 1999; 39: 558-68.
Song L, Mercado A, Vazquez N, Xie Q, Desai R, George AL, Gamba G, et al. Molecular, functional, and genomic characterization of human KCC2, the neuronal K-Cl cotransporter. Brain Res Mol Brain Res 2002; 103: 91-105.
Payne JA. Functional characterization of the neuronal-specific K-Cl cotransporter: implications for [K+]o regulation. Am J Physiol Cell Physiol 1997; 273: C1516-C1525.
Strange K, Singer TD, Morrison R, Delpire E. Dependence of KCC2 K-Cl cotransporter activity on a conserved carboxy terminus tyrosine residue. Am J Physiol Cell Physiol 2000; 279: C860-C867.
Gagnon KB, England R, Delpire E. Volume sensitivity of cation- Cl- cotransporters is modulated by the interaction of two kinases: Ste20-related proline-alanine-rich kinase and WNK4. Am J Physiol Cell Physiol 2006; 290: C134-C142.
Mercado A, Broumand V, Zandi-Nejad K, Enck AH, Mount DB. A C-terminal Domain in KCC2 Confers Constitutive K+- Cl- Cotransport. J Biol Chem 2006; 281: 1016-26.
Karadsheh MF, Delpire E. Neuronal restrictive silencing element is found in the KCC2 gene: molecular basis for KCC2-specific expression in neurons. J Neurophysiol 2001; 85: 995-7.
Sallinen R, Tornberg J, Putkiranta M, Horelli-Kuitunen N, Airaksinen MS, Wessman M. Chromosomal localization of SLC12A5/Slc12a5, the human and mouse genes for the neuronspecific K(+)-Cl(-) cotransporter (KCC2) defines a new region of conserved homology. Cytogenet Cell Genet 2001; 94: 67-70.
Mercado A, Vazquez N, Song L, Cortes R, Enck AH, Welch R, Delpire E, et al. Amino-Terminal Heterogeneity in the KCC3 K+-Cl- Cotransporter. Am J Physiol Renal Physiol 2005; 289: F1246-F1261.
Hiki K, D’Andrea RJ, Furze J, Crawford J, Woollatt E, Sutherland GR, Vadas MA, et al. Cloning, characterization, and chromosomal location of a novel human K+-Cl- cotransporter. J Biol Chem 1999; 274: 10661-10667.
Race JE, Makhlouf FN, Logue PJ, Wilson FH, Dunham PB, Holtzman EJ. Molecular cloning and functional characterization of KCC3, a new K-Cl cotransporter. Am J Physiol 1999; 277: C1210-C1219.
Mount DB, Mercado A, Song L, Xu J, George J, Delpire E, Gamba G. Cloning and characterization of KCC3 and KCC4, new members of the cation-chloride cotransporter gene family. J Biol Chem 1999; 274: 16355-62.
Meloz, de los Heroes P, Cruz-Rangel S, Vázquez N, Bobadilla NA, Pasantes-Morales H, et al. N-terminal serie dephosphorylation is required for KCC3 cotrasporter full activation by cell swelling. J Biol Chem 2013; 288: 31468-76.
Melo Z, Cruz-Rangel S, Bautista R, Vazquez N, Castaneda- Bueno M, Mount DB, et al. Molecular evidence for K+:Cl- cotransporters role in the kidney. Am J Physiol Renal Physiol 2013; 305: F1402-F1411.
Elmslie FV, Rees M, Williamson MP, Kerr M, Kjeldsen MJ, Pang KA, Sundqvist A, et al. Genetic mapping of a major susceptibility locus for juvenile myoclonic epilepsy on chromosome 15q. Hum Mol Genet 1997; 6: 1329-34.
Neubauer BA, Fiedler B, Himmelein B, Kampfer F, Lassker U, Schwabe G, Spanier I, et al. Centrotemporal spikes in families with rolandic epilepsy: linkage to chromosome 15q14. Neurology 1998; 51: 1608-12.
Howard HC, Dube MP, Prevost C, Bouchard JP, Mathieu J, Rouleau GA. Fine mapping the candidate region for peripheral neuropathy with or without agenesis of the corpus callosum in the French Canadian population. Eur J Hum Genet 2002; 10: 406-12.
Greger R, Schlatter E. Porpierties of the basolateral membrane on the cortical thick ascending limb of Henle’s loop of rabbit kidney. A model for secondary active chloride transport. Pflugers Archives 1983; 396: 325-34.
Boettger T, Hubner CA, Maier H, Rust MB, Beck FX, Jentsch TJ. Deafness and renal tubular acidosis in mice lacking the KCl co- transporter Kcc4. Nature 2002; 416: 874-8.
Lauf PK, Zhang J, Delpire E, Fyffe RE, Mount DB, Adragna NC. K-Cl co-transport: immunocytochemical and functional evidence for more than one KCC isoform in high K and low K sheep erythrocytes. Comp Biochem Physiol A Mol Integr Physiol 2001; 130: 499-509.
Quarmyne MO, Risinger M, Linkugel A, Frazier A, Joiner CH. Volume regulation and KCl cotransport in reticulocyte populations of sickle and normal red blood cells. Blood Cells Mol Dis 2011; 47: 95-9.
Lew VL, Bookchin RM. Ion transport pathology in the mechanism of sickle cell dehydration. Physiological Review 2005; 85: 179-200.
Joiner CH, Rettig R, Jiang M, Risinger M, Franco RS. Urea stimulation of KCl cotransport induces abnormal volume reduction in sickle reticulocytes. Blood 2007; 109: 1728-35.
Miles R, Blaesse P, Huberfeld G, Wittner L, Ka. Chloride homeostasis and GABA signaling in temporal lobe epilepsy, Jasper’s Basic Mechanisms of the Epilepsies, 4th ed. Noebels JL, voli M, Rogawski MA, lsen RW, Delgado-Escueta AV (eds.). Bethesda; 2012.
Woo NS, Lu J, England R, McClellan R, Dufour S, Mount DB, Deutch AY, et al. Hyperexcitability and epilepsy associated with disruption of the mouse neuronal-specific K-Cl cotransporter gene. Hippocampus 2002; 12: 258-68.
Howard HC, Mount DB, Rochefort D, Byun N, Dupre N, Lu J, Fan X, et al. The K-Cl cotransporter KCC3 is mutant in a severe peripheral neuropathy associated with agenesis of the corpus callosum. Nat Genet 2002; 32: 384-92.
Demir E, Irobi J, Erdem S, Demirci M, Tan E, Timmerman V, De Jonghe P, et al. Andermann syndrome in a Turkish patient. J Child Neurol 2003; 18: 76-9.
Uyanik G, Elcioglu N, Penzien J, Gross C, Yilmaz Y, Olmez A, Demir E, et al. Novel truncating and missense mutations of the KCC3 gene associated with Andermann syndrome. Neurology 2006; 66: 1044-8.
Dupre N, Howard HC, Mathieu J, Karpati G, Vanasse M, Bouchard JP, Carpenter S, et al. Hereditary motor and sensory neuropathy with agenesis of the corpus callosum. Ann Neurol 2003; 54: 9-18.
Salin-Cantegrel A, Riviere JB, Shekarabi M, Rasheed S, Dacal S, Laganiere J, Gaudet R, et al. Transit defect of potassiumchloride Co-transporter 3 is a major pathogenic mechanism in hereditary motor and sensory neuropathy with agenesis of the corpus callosum. J Biol Chem 2011; 286: 28456-65.
Boettger T, Rust MB, Maier H, Seidenbecher T, Schweizer M, Keating DJ, Faulhaber J, et al. Loss of K-Cl co-transporter KCC3 causes deafness, neurodegeneration and reduced seizure threshold. EMBO Journal 2003; 22: 5422-34.
Delpire E, Mount DB. Human and murine phenotypes associated with defects in cation-chloride cotransport. Annu Rev Physiol 2002; 64: 803-43.
Chen YF, Chou CY, Ellory JC, Shen MR. The emerging role of KCl cotransport in tumor biology. Am J Transl Res 2010; 2: 345-55.
Shen MR, Chou CY, Hsu KF, Liu HS, Dunham PB, Holtzman EJ, Ellory JC. The KCl cotransporter isoform KCC3 can play an important role in cell growth regulation. Proc Natl Acad Sci USA 2001; 98: 14714-9.
Shen MR, Chou CY, Hsu KF, Hsu YM, Chiu WT, Tang MJ, Alper SL, et al. KCl Cotransport Is an Important Modulator of Human Cervical Cancer Growth and Invasion. J Biol Chem 2003; 278: 39941-50.
Rust MB, Faulhaber J, Budack MK, Pfeffer C, Maritzen T, Didie M, Beck FX, et al. Neurogenic Mechanisms Contribute to Hypertension in Mice With Disruption of the K-Cl Cotransporter KCC3. Circ Res 2006; 98: 549-56.
Jentsch TJ. Chloride transport in the kidney: lessons from human disease and knockout mice. J Am Soc Nephrol 2005; 16: 1549-61.