2014, Número 1
<< Anterior Siguiente >>
Rev Mex Neuroci 2014; 15 (1)
Efectos del ejercicio y la actividad motora sobre la estructura y función cerebral
Acevedo-Triana CA, Ávila-Campos JE, Cárdenas LF
Idioma: Español
Referencias bibliográficas: 200
Paginas: 36-53
Archivo PDF: 326.99 Kb.
RESUMEN
El efecto del ejercicio sobre la función cerebral ha sido reportado en varios estudios a lo largo de varios años, pero el mecanismo
que podría explicar este efecto no es siempre consistente y por el contrario se han propuesto varios mecanismos diferentes. Esta
revisión muestra en una parte inicial la descripción de los efectos del ejercicio sobre las estructuras y función cerebral en
diferentes niveles; desde el nivel molecular y epigenético hasta un nivel cognitivo. Luego se describen las características básicas
del control motor y los efectos del entrenamiento, aprendizaje y codificación de memoria motora. Finalmente se discute la
posibilidad de que los fenómenos de creación de nuevas neuronas y sinapsis pueden explicar los efectos del ejercicio y
la actividad motora sobre la cognición, pero probablemente la forma de inducción de esta plasticidad se da por vías diferentes.
REFERENCIAS (EN ESTE ARTÍCULO)
Zeller MEGH, Modi AC. Related to Obesity in Children and Adolescents. In: Handbook of Childhood and Adolescent Obesity Issues in Clinical Child Psychology. New York: Springer Science 2008: 25-42.
Singh S, Mcmahan S. An Evaluation of the Relationship between Academic Performance And Physical Fitness Measures in California Schools. Californian J Health Promot 2006; 4: 207-14.
Yackobovitch-Gavan M, Nagelberg N, Phillip M, Ashkenazi-Hoffnung L, Hershkovitz E, Shalitin S. The influence of diet and/or exercise and parental compliance on health-related quality of life in obese children. Nutr Res 2009; 29: 397-404.
Giussani M, Antolini L, Brambilla P, Pagani M, Zuccotti G, Valsecchi MG, et al. Cardiovascular risk assessment in children: role of physical activity, family history and parental smoking on BMI and blood pressure. J Hypertens 2013; 31: 983-92.
Kelley GA, Kelley KS. Aerobic exercise and lipids and lipoproteins in children and adolescents: A meta-analysis of randomized controlled trials. Atherosclerosis 2008; 191: 447-53.
Spreadbury I, Samis AJW. Evolutionary Aspects of Obesity, Insulin Resistance, and Cardiovascular Risk. Curr Cardiovasc Risk Rep 2013; 7: 136-46.
Voulgari C, Pagoni S, Vinik A, Poirier P. Exercise improves cardiac autonomic function in obesity and diabetes. Metabolism 2013; 62: 609-21.
Arvola P, Wu X, Kähönen M, Mäkynen H, Riutta A, Mucha I, et al. Exercise enhances vasorelaxation in experimental obesity associated hypertension. Cardiovasc Res 1999; 43: 992-1002.
Horton ES. The role of exercise in the treatment of hypertension in obesity. Int J Obes 1981; 5(Suppl. 1): 165-71.
Bodenlos JS, Lemon SC, Schneider KL, August MA, Pagoto SL. Associations of mood and anxiety disorders with obesity: Comparisons by ethnicity. J Psychosom Res 2011; 71: 319-24.
Skilton MR, Moulin P, Terra J-L, Bonnet F. Associations Between Anxiety, Depression, and the Metabolic Syndrome. Biol Psychiatry 2007; 62: 1251-7.
Hassink SG, Zapalla F, Falini L, Datto G. Exercise and the obese child. Prog Pediatr Cardiol 2008; 25: 153-7.
Budde H, Voelcker-Rehage C, Pietraßyk-Kendziorra S, Ribeiro P, Tidow G. Acute coordinative exercise improves attentional performance in adolescents. Neurosci Lett 2008; 441: 219-23.
Coe D, Pivarnik J, Womack C, Reeves M, Malina R. Effect of physical education and activity levels on academic achievement in children. Med Sci Sport Exerc 2006; 38: 1515-19.
Pate RR, Heath GW, Dowda M, Trost SG. Associations between physical activity and other health behaviors in a representative sample of US adolescents. Am J Public Health 1996; 86: 1577-81.
Chen MJ, Russo-Neustadt AA. Exercise activates the phosphatidylinositol 3-kinase pathway. Brain Res. Mol Brain Res 2005; 135: 181-93.
Ben J, Soares FMS, Cechetti F, Vuaden FC, Bonan CD, Netto CA, et al. Exercise effects on activities of Na(+),K(+)-ATPase, acetylcholinesterase and adenine nucleotides hydrolysis in ovariectomized rats. Brain Res 2009; 1302: 248-55.
Ferreira AFB, Real CC, Rodrigues AC, Alves AS, Britto LRG. Moderate exercise changes synaptic and cytoskeletal proteins in motor regions of the rat brain. Brain Res 2010; 1361: 31-42.
Timmons JA, Jansson E, Fischer H, Gustafsson T, Greenhaff PL, Ridden J, et al. Modulation of extracellular matrix genes reflects the magnitude of physiological adaptation to aerobic exercise training in humans. BMC Biol 2005; 3: 19.
Seo T-B, Kim B-K, Ko I-G, Kim DH, Shin MS, Kim CJ, et al. Effect of treadmill exercise on Purkinje cell loss and astrocytic reaction in the cerebellum after traumatic brain injury. Neurosci Lett 2010; 481: 178-82.
Tsakiris S, Parthimos T, Parthimos N, Tsakiris T, Schulpis KH. The beneficial effect of L-cysteine supplementation on DNA oxidation induced by forced training. Pharmacol Res 2006; 53: 386-90.
Berchtold N, Castello N, Cotman CW. Exercise and time-dependent benefits to learning and memory. Neuroscience 2010; 167: 588-97.
Kim D-H, Ko I-G, Kim B-K, Kim TW, Kim SE, Shin MS, et al. Treadmill exercise inhibits traumatic brain injury-induced hippocampal apoptosis. Physiol Behav 2010; 101: 660-5.
Rutten BPF, Schmitz C, Gerlach OHH, Oyen HM, de Mesquita EB, Steinbusch HW, et al. The aging brain: accumulation of DNA damage or neuron loss?. Neurobiol Aging 2007; 28: 91-8.
Marques-Aleixo I, Oliveira PJ, Moreira PI, Magalhães J, Ascensão A. Physical exercise as a possible strategy for brain protection: evidence from mitochondrial-mediated mechanisms. Prog Neurobiol 2012; 99: 149-62. Acevedo-Triana CA, et al. Efectos del ejercicio y la actividad motora 48 Rev Mex Neuroci Enero-Febrero, 2014; 15(1): 36-53
Berchtold NC, Castello N, Cotman CW. Exercise and timedependent benefits to learning and memory. Neuroscience 2010; 167: 588-97.
Sartori CR, Vieira AS, Ferrari EM, Langone F, Tongiorgi E, Parada CA. The antidepressive effect of the physical exercise correlates with increased levels of mature BDNF, and proBDNF proteolytic cleavage-related genes, p11 and tPA. Neuroscience 2011; 180: 9-18.
Duman CH, Schlesinger L, Russell DS, Duman RS. Voluntary exercise produces antidepressant and anxiolytic behavioral effects in mice. Brain Res 2008; 1199: 148-58.
Cechetti F, Fochesatto C, Scopel D, Nardin P, Gonçalves CA, Netto CA, et al. Effect of a neuroprotective exercise protocol on oxidative state and BDNF levels in the rat hippocampus. Brain Res 2008; 1188: 182-8.
Van Praag H. Neurogenesis and exercise: past and future directions. Neuromolecular Med 2008; 10: 128-40.
Zheng H, Liu Y, Li W, Yang B, Chen D, Wang X, et al. Beneficial effects of exercise and its molecular mechanisms on depression in rats. Behav Brain Res 2006; 168: 47-55.
Ferreira AFB, Real CC, Rodrigues AC, Alves AS, Britto LRG. Short-term, moderate exercise is capable of inducing structural, bdnf-independent hippocampal plasticity. Brain Res 2011; 1425: 111-22.
Li J, Ding Y-H, Rafols JA, Lai Q, McAllister JP, Ding Y. Increased astrocyte proliferation in rats after running exercise. Neurosci Lett 2005; 386: 160-64.
Uda M, Ishido M, Kami K, Masuhara M. Effects of chronic treadmill running on neurogenesis in the dentate gyrus of the hippocampus of adult rat. Brain Res 2006; 1104: 64-72.
Kaliman P, Párrizas M, Lalanza JF, Camins A, Escorihuela RM, Pallàs M. Neurophysiological and epigenetic effects of physical exercise on the aging process. Ageing Res Rev 2011; 10: 475-86.
Lovatel GA, Elsner VR, Bertoldi K, Vanzella C, Moysés Fdos S, Vizuete A, et al. Treadmill exercise induces age-related changes in aversive memory, neuroinflammatory and epigenetic processes in the rat hippocampus. Neurobiol Learn Mem 2013; 101: 94-102.
Abel JL, Rissman EF. Running-induced epigenetic and gene expression changes in the adolescent brain. Int J Dev Neurosci 2012; 31: 382-90.
Elsner VR, Lovatel GA, Bertoldi K, Vanzella C, Santos FM, Spindler C, et al. Effect of different exercise protocols on histone acetyltransferases and histone deacetylases activities in rat hippocampus. Neuroscience 2011; 192: 580-7.
Elsner VR, Lovatel GA, Moysés F, Bertoldi K, Spindler C, Cechinel LR, et al. Exercise induces age-dependent changes on epigenetic parameters in rat hippocampus: a preliminary study. Exp Gerontol 2013; 48: 136-9.
Eyre H, Baune BT. Neuroimmunological effects of physical exercise in depression. Brain Behav Immun 2012; 26: 251-66.
Fontán-Lozano A, Romero-Granados R, Troncoso J, Múnera A, Delgado-García JM, Carrión AM. Histone deacetylase inhibitors improve learning consolidation in young and in KA-inducedneurodegeneration and SAMP-8-mutant mice. Mol Cell Neurosci 2008; 39: 193-201.
Gomez-Pinilla F, Zhuang Y, Feng J, Ying Z, Fan G. Exercise impacts brain-derived neurotrophic factor plasticity by engaging mechanisms of epigenetic regulation. Eur J Neurosci 2011; 33: 383-90.
Chestnut BA, Chang Q, Price A, Lesuisse C, Wong M, Martin LJ. Epigenetic regulation of motor neuron cell death through DNA methylation. J Neurosci 2011; 31: 16619-36.
Zajac MS, Pang TYC, Wong N, Weinrich B, Leang LS, Craig JM, et al. Wheel running and environmental enrichment differentially modify exon-specific BDNF expression in the hippocampus of wild-type and pre-motor symptomatic male and female Huntington’s disease mice. Hippocampus 2010; 20: 621-36.
Collins A, Hill LE, Chandramohan Y, Whitcomb D, Droste SK, Reul JM. Exercise improves cognitive responses to psychological stress through enhancement of epigenetic mechanisms and gene expression in the dentate gyrus. PLoS One 2009; 4: e4330.
Van Praag H. Exercise and the brain: something to chew on. Trends Neurosci 2009; 32: 283-90.
Hötting K, Röder B. Beneficial effects of physical exercise on neuroplasticity and cognition. Neurosci Biobehav Rev 2013; 37: 2243-57.
Aimone JB, Deng W, Gage FH. Perspective/ : Point/Counterpoint Resolving New Memories/ : A Critical Look at the Dentate Gyrus, Adult Neurogenesis, and Pattern Separation. Neuron 2011; 70: 589-96.
Aimone JB, Wiles J, Gage FH. Viewpoint Computational Influence of Adult Neurogenesis on Memory Encoding. Neuron 2009; 61: 187-202.
Clelland CD, Choi M, Romberg C, Clemenson GD Jr, Fragniere A, Tyers P, et al. A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science 2009; 325: 210-3.
Pereira AC, Huddleston DE, Brickman AM, Sosunov AA, Hen R, McKhann GM, et al. An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc Natl Acad Sci USA 2007; 104: 5638-43.
Tronel S, Fabre A, Charrier V, Oliet SH, Gage FH, Abrous DN. Spatial learning sculpts the dendritic arbor of adult-born hippocampal neurons. PNAS Neurosci 2010; 107: 1-6.
Arida RM, Scorza CA, Scorza FA, Gomes S, Naffah-mazzacoratti G, Abrão E. Effects of different types of physical exercise on the staining of parvalbumin-positive neurons in the hippocampal formation of rats with epilepsy. Prog Neuropsychopharmacol Biol Psychiatry 2007; 31: 814-22.
Malek MH, Olfert IM. Global deletion of thrombospondin-1 increases cardiac and skeletal muscle capillarity and exercise capacity in mice. Exp Physiol 2009; 94: 749-60.
Barna BF, Takakura AC, Moreira TS. Pontomedullary and hypothalamic distribution of Fos-like immunoreactive neurons after acute exercise in rats. Neuroscience 2012; 212: 120–130.
Maddock RJ, Casazza GA, Buonocore MH, Tanase C. Vigorous exercise increases brain lactate and Glx (glutamate+glutamine): a dynamic 1H-MRS study. Neuroimage 2011; 57: 1324–1330.
Neeper SA, Gómez-Pinilla F, Choi J, Cotman CW. Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Res 1996; 726: 49-56. Acevedo-Triana CA, et al. Efectos del ejercicio y la actividad motora Rev Mex Neuroci Enero-Febrero, 2014; 15(1): 36-53 49
Chih CP, Lipton P, Roberts Jr EL. Do active cerebral neurons really use lactate rather than glucose? Trends Neurosci 2001; 24: 573-8.
Belgard TG, Marques AC, Oliver PL, Abaan HO, Sirey TM, Hoerder- Suabedissen A, et al. A Transcriptomic Atlas of Mouse Neocortical Layers. Neuron 2011; 71: 605-16.
Dietrich MO, Mantese CE, Porciuncula LO, Ghisleni G, Vinade L, Souza DO, et al. Exercise affects glutamate receptors in postsynaptic densities from cortical mice brain. Brain Res 2005; 1065: 20-5.
Hosseini M, Alaei HA, Naderi A, Sharifi MR, Zahed R. Treadmill exercise reduces self-administration of morphine in male rats. Pathophysiology 2009; 16: 3-7.
Little HR, Kramer JM, Beatty JA, Waldrop TG. Chronic exercise increases GAD gene expression in the caudal hypothalamus of spontaneously hypertensive rats. Mol Brain Res 2001; 95: 48-54.
Real CC, Ferreira AFB, Hernandes MS, Britto LR, Pires RS. Exerciseinduced plasticity of AMPA-type glutamate receptor subunits in the rat brain. Brain Res 2010; 1363: 63-71.
Leung LY, Tong KY, Zhang SM, Zeng XH, Zhang KP, Zheng XX. Neurochemical effects of exercise and neuromuscular electrical stimulation on brain after stroke: a microdialysis study using rat model. Neurosci Lett 2006; 397: 135-9.
Pfrieger FW. Role of glia in synapse development. Curr Opin Neurobiol 2002; 12: 486-90.
Pfrieger FW. Role of glial cells in the formation and maintenance of synapses. Brain Res Rev 2010; 63: 39-46.
Mastelari RB, Bagolan de Abreu S, Morgan de Aguiar Corrêa F, Dutra de Souza HC, Martins-Pinge MC. Glutamatergic neurotransmission in the hypothalamus PVN on heart rate variability in exercise trained rats. Auton Neurosci 2012; 170: 42-47.
Sutoo D, Akiyama K. Regulation of brain function by exercise. Neurobiol Dis 2003; 13: 1-14.
Uysal N, Tugyan K, Kayatekin BM, Acikgoz O, Bagriyanik HA, Gonenc S, et al. The effects of regular aerobic exercise in adolescent period on hippocampal neuron density, apoptosis and spatial memory. Neurosci Lett 2005; 383: 241-5.
Lynch WJ, Peterson AB, Sanchez V, Abel J, Smith MA. Exercise as a novel treatment for drug addiction: A neurobiological and stage-dependent hypothesis. Neurosci Biobehav Rev 2013; 37: 1622-44.
Hasegawa H, Yazawa T, Yasumatsu M, Otokawa M, Aihara Y. Alteration in dopamine metabolism in the thermoregulatory center of exercising rats. Neurosci Lett 2000; 289: 161-4.
Reed J, Ones DS. The effect of acute aerobic exercise on positive activated affect: A meta-analysis. Psychol Sport Exerc 2006; 7: 477-514.
Heyes MP, Garnett ES, Coates G. Central dopaminergic activity influences rats ability to exercise. Life Sci 1985; 36: 671-7.
MacRae PG, Spirduso WW, Walters TJ, Farrar RP, Wilcox RE. Endurance training effects on striatal D2 dopamine receptor binding and striatal dopamine metabolites in presenescent older rats. Psychopharmacology (Berl) 1987; 92: 236-40.
Aguiar AS, Araújo AL, da-Cunha TR, Speck AE, Ignácio ZM, De- Mello N, et al. Physical exercise improves motor and short-term social memory deficits in reserpinized rats. Brain Res Bull 2009; 79: 452-7.
Greenwood BN, Foley TE, Le TV, Strong PV, Loughridge AB, Day HE, et al. Long-term voluntary wheel running is rewarding and produces plasticity in the mesolimbic reward pathway. Behav Brain Res 2011; 217: 354-62.
Mabandla MV, Russell VA. Voluntary exercise reduces the neurotoxic effects of 6-hydroxydopamine in maternally separated rats. Behav Brain Res 2010; 211: 16-22.
O’Dell SJ, Gross NB, Fricks AN, Casiano BD, Nguyen TB, Marshall JF. Running wheel exercise enhances recovery from nigrostriatal dopamine injury without inducing neuroprotection. Neuroscience 2007; 144: 1141-51.
Smith BA, Goldberg NR, Meshul CK. Effects of treadmill exercise on behavioral recovery and neural changes in the substantia nigra and striatum of the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridinelesioned mouse. Brain Res 2011; 1386: 70-80.
Aguiar AS Jr, Moreira EL, Hoeller AA, Oliveira PA, Córdova FM, Glaser V, et al. Exercise attenuates levodopa-induced dyskinesia in 6-hydroxydopamine-lesioned mice. Neuroscience 2013; 243: 46-53.
Stroth S, Reinhardt RK, Thöne J, Hille K, Schneider M, Härtel S, et al. Impact of aerobic exercise training on cognitive functions and affect associated to the COMT polymorphism in young adults. Neurobiol Learn Mem 2010; 94: 364-72.
Alavian KN, Simon HH. Linkage of cDNA expression profiles of mesencephalic dopaminergic neurons to a genome-wide in situ hybridization database. Mol Neurodegener 2009; 4: 6.
Mattson MP, Maudsley S, Martin B. BDNF and 5-HT: a dynamic duo in age-related neuronal plasticity and neurodegenerative disorders. Trends Neurosci 2004; 27: 589-94.
Gomez-Merino D, Béquet F, Berthelot M, Chennaoui M, Guezennec CY. Site-dependent effects of an acute intensive exercise on extracellular 5-HT and 5-HIAA levels in rat brain. Neurosci Lett 2001; 301: 143-6.
Mazzardo-Martins L, Martins DF, Marcon R, Dos Santos UD, Speckhann B, Gadotti VM, et al. High-intensity extended swimming exercise reduces pain-related behavior in mice: involvement of endogenous opioids and the serotonergic system. J Pain 2010; 11: 1384-93.
Smriga M, Kameishi M, Torii K. Exercise-Dependent Preference for a Mixture of Branched-Chain Amino Acids and Homeostatic Control of Brain Serotonin in Exercise Rats. J Nutr 2006; 136: 548S- 552S.
Chaouloff F. Effects of acute physical exercise on central serotonergic systems. Med Sci Sport Exerc 1997; 29: 58-62.
Béquet F, Gomez-Merino D, Berthelot M, Guezennec CY. Evidence that brain glucose availability influences exercise-enhanced extracellular 5-HT level in hippocampus: a microdialysis study in exercising rats. Acta Physiol Scand 2002; 176: 65-9.
Sigwalt AR, Budde H, Helmich I, Glaser V, Ghisoni K, Lanza S, et al. Molecular aspects involved in swimming exercise training reducing anhedonia in a rat model of depression. Neuroscience 2011; 192: 661-74. Acevedo-Triana CA, et al. Efectos del ejercicio y la actividad motora 50 Rev Mex Neuroci Enero-Febrero, 2014; 15(1): 36-53
Ivy AS, Rodriguez FG, Garcia C, Chen MJ, Russo-Neustadt AA. Noradrenergic and serotonergic blockade inhibits BDNF mRNA activation following exercise and antidepressant. Pharmacol Biochem Behav 2003; 75: 81-8.
Kobayashi K, Ikeda Y, Sakai A, Yamasaki N, Haneda E, Miyakawa T, et al. Reversal of hippocampal neuronal maturation by serotonergic antidepressants. Proc Natl Acad Sci USA 2010; 107: 8434-9.
Ma Q. Beneficial effects of moderate voluntary physical exercise and its biological mechanisms on brain health. Neurosci Bull 2008; 24: 265-70.
Weicker H, Strüder HK. Influence of exercise on serotonergic neuromodulation in the brain. Amino Acids 2001; 20: 35-47.
Chennaoui M, Grimaldi B, Fillion MP, Bonnin A, Drogou C, Fillion G, et al. Effects of physical training on functional activity of 5-HT1B receptors in rat central nervous system: role of 5-HT-moduline. Naunyn. Schmiedebergs. Arch Pharmacol 2000; 361: 600-4.
De Quervain DJ-F, Henke K, Aerni A, Coluccia D, Wollmer MA, Hock C, et al. A functional genetic variation of the 5-HT2a receptor affects human memory. Nat Neurosci 2003; 6: 1141-2.
Garcia C, Chen M, Garza A, Cotman C, Russo-Neustadt A. The influence of specific noradrenergic and serotonergic lesions on the expression of hippocampal brain-derived neurotrophic factor transcripts following voluntary physical activity. Neuroscience 2003; 119: 721-32.
Tomporowski PD. Effects of acute bouts of exercise on cognition. Acta Psychol (Amst) 2003; 112: 297-324.
Sciolino NR, Holmes PV. Exercise offers anxiolytic potential: a role for stress and brain noradrenergic-galaninergic mechanisms. Neurosci Biobehav Rev 2012; 36: 1965-84.
Kastello GM, Sothmann MS. Brain norepinephrine changes with simulated weightlessness and relation to exercise training. Physiol Behav 1999; 66: 885-91.
Garza AA, Ha TG, Garcia C, Chen MJ, Russo-Neustadt AA. Exercise, antidepressant treatment, and BDNF mRNA expression in the aging brain. Pharmacol Biochem Behav 2004; 77: 209-20.
Grego F, Vallier JM, Collardeau M, Bermon S, Ferrari P, Candito M, et al. Effects of long duration exercise on cognitive function, blood glucose, and counterregulatory hormones in male cyclists. Neurosci Lett 2004; 364: 76-80.
Dishman RK, Renner KJ, White-Welkley JE, Burke KA, Bunnell BN. Treadmill exercise training augments brain norepinephrine response to familiar and novel stress. Brain Res Bull 2000; 52: 337-42.
Levenson CW, Moore JB. Response of rat adrenal neuropeptide Y and tyrosine hydroxylase mRNA to acute stress is enhanced by long-term voluntary exercise. Neurosci Lett 1998; 242: 177-9.
Morris KA, Gold PE. Epinephrine and glucose modulate trainingrelated CREB phosphorylation in old rats: relationships to agerelated memory impairments. Exp Gerontol 2013; 48: 115-27.
Winter B, Breitenstein C, Mooren FC, Voelker K, Fobker M, Lechtermann A, et al. High impact running improves learning. Neurobiol Learn Mem 2007; 87: 597-609.
Jacotte-Simancas A, Costa-Miserachs D, Torras-Garcia M, Coll- Andreu M, Portell-Cortés I. Effect of voluntary physical exercise and post-training epinephrine on acquisition of a spatial task in the barnes maze. Behav. Brain Res 2013; 247: 178-81.
Nakajima K, Uchida S, Suzuki A, Hotta H, Aikawa Y. The effect of walking on regional blood flow and acetylcholine in the hippocampus in conscious rats. Auton Neurosci 2003; 103: 83-92.
Dere E, Frisch C, De Souza Silva MADE, Gödecke A, Schrader J, Huston JP. Unaltered radial Maze performance and Brain Acetylcholine of the endothelial Nitric Oxide Synthase Knockout mouse. Neuroscience 2001; 107: 561-70.
Wanner SP, Guimarães JB, Rodrigues LOC, Marubayashi U, Coimbra CC, Lima NR. Muscarinic cholinoceptors in the ventromedial hypothalamic nucleus facilitate tail heat loss during physical exercise. Brain Res Bull 2007; 73: 28-33.
McGough NNH, Thomas JD, Dominguez HD, Riley EP. Insulin-like growth factor-I mitigates motor coordination deficits associated with neonatal alcohol exposure in rats. Neurotoxicol Teratol 2009; 31: 40-8.
Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, et al. Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci USA 2011; 108: 3017-22.
Cui L, Hofer T, Rani A, Leeuwenburgh C, Foster TC. Comparison of lifelong and late life exercise on oxidative stress in the cerebellum. Neurobiol Aging 2009; 30: 903-9.
Navarro A, Gomez C, López-Cepero JM, Boveris A. Beneficial effects of moderate exercise on mice aging: survival, behavior, oxidative stress, and mitochondrial electron transfer. Am J Physiol Regul Integr Comp Physiol 2004; 286: R505-R511.
Drapeau E, Mayo W, Aurousseau C, Le Moal M, Piazza PV, Abrous DN. Spatial memory performances of aged rats in the water maze predict levels of hippocampal neurogenesis. Proc Natl Acad Sci 2003; 100: 14385-90.
Chen H, Liao YL. Effects of Chronic Exercise on Muscarinic Receptor- Mediated Vasodilation in Rats. Chin J Physiol 1998; 41: 161-6.
Cechetti F, Worm PV, Elsner VR, Bertoldi K, Sanches E, Ben J, et al. Forced treadmill exercise prevents oxidative stress and memory deficits following chronic cerebral hypoperfusion in the rat. Neurobiol Learn Mem 2012; 97: 90-6.
McDonnell MN, Smith AE, Mackintosh SF. Aerobic exercise to improve cognitive function in adults with neurological disorders: a systematic review. Arch Phys Med Rehabil 2011; 92: 1044-52.
Jin J, Jing H, Choi G, Oh MS, Ryu JH, Jeong JW, et al. Voluntary exercise increases the new cell formation in the hippocampus of ovariectomized mice. Neurosci Lett 2008; 439: 260-3.
Gorton LM, Vuckovic MG, Vertelkina N, Petzinger GM, Jakowec MW, Wood RI. Exercise effects on motor and affective behavior and catecholamine neurochemistry in the MPTP-lesioned mouse. Behav Brain Res 2010; 213: 253-62.
Vogt T, Schneider S, Abeln V, Anneken V, Strüder HK. Exercise, mood and cognitive performance in intellectual disability—A neurophysiological approach. Behav Brain Res 2012; 226: 473-80.
Yanagisawa H, Dan I, Tsuzuki D, Kato M, Okamoto M, Kyutoku Y, et al. Acute moderate exercise elicits increased dorsolateral prefrontal activation and improves cognitive performance with Stroop test. Neuroimage 2010; 50: 1702-10. Acevedo-Triana CA, et al. Efectos del ejercicio y la actividad motora Rev Mex Neuroci Enero-Febrero, 2014; 15(1): 36-53 51
Fuster J. Anatomy of the Prefrontal Cortex. In: The Prefrontal Cortex. San Diego: Elsevier; 2008, p. 7-58.
Piek JP, Dyck MJ, Nieman A, Anderson M, Hay D, Smith LM, et al. The relationship between motor coordination, executive functioning and attention in school aged children. Arch Clin Neuropsychol 2004; 19: 1063-76.
Smith PJ, Blumenthal JA, Hoffman BM, Cooper H, Strauman TA, Welsh-Bohmer K, et al. Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials. Psychosom Med 2010; 72: 239-52.
Kelley GA, Kelley KS. Aerobic exercise and lipids and lipoproteins in children and adolescents: a meta-analysis of randomized controlled trials. Atherosclerosis 2007; 191: 447-53.
Aigner S, Denli AM, Gage FH. A Novel Model for an Older Remodeler/ : The BAF Swap in Neurogenesis. Neuron 2007; 55: 171-3.
Radák Z, Kaneko T, Tahara S, Nakamoto H, Pucsok J, Sasvári M, et al. Regular exercise improves cognitive function and decreases oxidative damage in rat brain. Neurochem Int 2001; 38: 17-23.
Hillman CH, Snook EM, Jerome GJ. Acute cardiovascular exercise and executive control function. Int J Psychophysiol 2003; 48: 307-14.
Pietrelli A, Lopez-Costa J, Goñi R, Brusco A, Basso N. Aerobic exercise prevents age-dependent cognitive decline and reduces anxiety-related behaviors in middle-aged and old rats. Neuroscience 2012; 202: 252-66.
Mello PB, Benetti F, Cammarota M, Izquierdo I. Physical exercise can reverse the deficit in fear memory induced by maternal deprivation. Neurobiol Learn Mem 2009; 92: 364-9.
Pietropaolo S, Sun Y, Li R, Brana C, Feldon J, Yee BK. The impact of voluntary exercise on mental health in rodents: a neuroplasticity perspective. Behav Brain Res 2008; 192: 42-60.
Knöchel C, Oertel-Knöchel V, O’Dwyer L, et al. Cognitive and behavioural effects of physical exercise in psychiatric patients. Prog. Neurobiol 2012; 96: 46-68.
Polich J. On the relationship between EEG and P300: Individual differences, aging, and ultradian rhythms. Int J Psychophysiol 1997; 26: 299-317.
Budde H, Windisch C, Kudielka BM, Voelcker-Rehage C. Saliva cortisol in school children after acute physical exercise. Neurosci Lett 2010; 483: 16-19.
Miller EK, Cohen JD. An Integrative Theory of Prefrontal Cortex Function. Annu Rev Neurosci 2001; 24: 167-202.
Rizzolatti G, Craighero L. The Mirror-Neuron System. Annu Rev Neurosci 2004; 27: 169-92.
Weissman DH, Perkins AS, Woldorff MG. Cognitive control in social situations: A role for the dorsolateral prefrontal cortex. Neuroimage 2008; 40: 955-62.
Wood JN, Romero SG, Knutson KM, Grafman J. Representation of attitudinal knowledge: role of prefrontal cortex, amygdala and parahippocampal gyrus. Neuropsychologia 2005; 43: 249-59.
Zellner MR, Ranaldi R. How conditioned stimuli acquire the ability to activate VTA dopamine cells: A proposed neurobiological component of reward-related learning. Neurosci Biobehav Rev 2010; 34: 769-80.
Wallis JD. Cross-species studies of orbitofrontal cortex and valuebased decision-making. Nat Neurosci 2012; 15: 13-19.
Wood JN, Grafman J. Human prefrontal cortex: processing and representational perspectives. Nat Rev Neurosci 2003; 4: 139-147.
Van Praag H, Kempermann G, Gage FH. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 1999; 2: 266-70.
Bunge SA, Burrows B, Wagner AD. Prefrontal and hippocampal contributions to visual associative recognition: Interactions between cognitive control and episodic retrieval. Brain Cogn 2004; 56: 141-52.
Da Cunha C, Wietzikoski EC, Dombrowski P, et al. Learning processing in the basal ganglia: a mosaic of broken mirrors. Behav Brain Res 2009; 199: 157-70.
Cotman CW, Berchtold NC. Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci 2002; 25: 295-301.
Flores JC, Ostrosky-Solís F. Neuropsicología de Lóbulos Frontales, Funciones Ejecutivas y Conducta Humana. Rev Neuropsicol Neuropsiquiatría y Neurociencias 2008; 8: 47-58.
Hernandez MT, Sauerwein HC, Jambaqué I, De Guise E, Lussier F, Lortie A, et al. Deficits in executive functions and motor coordination in children with frontal lobe epilepsy. Neuropsychologia 2002; 40: 384-400.
Bunge SA, Crone EA. Neural correlates of the development of cognitive control. In: Rumsey JM, Monique E (eds.). Neuroimaging in Developmental Clinical Neuroscience. Cambridge: Cambridge University Press; 2009, p. 22-37.
Moustafa AA, Maida AS. Using TD learning to simulate working memory performance in a model of the prefrontal cortex and basal ganglia. Cogn Syst Res 2007; 8: 262-81.
Leff DR, Elwell CE, Orihuela-Espina F, Atallah L, Delpy DT, Darzi AW, et al. Changes in prefrontal cortical behaviour depend upon familiarity on a bimanual co-ordination task: An fNIRS study. Neuroimage 2008; 39: 805-13.
Ding Y, Li J, Lai Q, Rafols JA, Luan X, Clark J, et al. Motor balance and coordination training enhances functional outcome in rat with transient middle cerebral artery occlusion. Neuroscience 2004; 123: 667-74.
Lubics A, Reglõdi D, Tamás A, Kiss P, Szalai M, Szalontay L, et al. Neurological reflexes and early motor behavior in rats subjected to neonatal hypoxic–ischemic injury. Behav Brain Res 2005; 157: 157-65.
Serrien DJ, Ivry RB, Swinnen SP. The missing link between action and cognition. Prog Neurobiol 2007; 82: 95-107.
Collin L, Usiello A, Erbs E, Mathis C, Borrelli E. Motor training compensates for cerebellar dysfunctions caused by oligodendrocyte ablation. Proc Natl Acad Sci USA 2004; 101: 325-30.
Alario F-X, Chainay H, Lehericy S, Cohen L. The role of the supplementary motor area (SMA) in word production. Brain Res 2006; 1076: 129-43. Acevedo-Triana CA, et al. Efectos del ejercicio y la actividad motora 52 Rev Mex Neuroci Enero-Febrero, 2014; 15(1): 36-53
Picard N, Strick PL. Motor Areas of the Medial Wall: A Review of Their Location and Functional Activation. Cereb Cortex 1996; 6: 342-53.
Picard N, Strick PL. Imaging the premotor areas. Curr Opin Neurobiol 2001; 11: 663-72.
Kazennikov O, Hyland B, Corboz M, Babalian A, Rouiller EM, Wiesendanger M. Neural activity of supplementary and primary motor areas in monkeys and its relation to bimanual and unimanual movement sequences. Neuroscience 1999; 89: 661-74.
Wise S, Shadmehr R. Motor Control. In: Ramachandra, ed. Encyclopedia of the Human Brain. Elsevier BV; 2009.
Ito M. Mechanisms of motor learning in the cerebellum. Brain Res 2000; 886: 237-45.
Tirapu-Ustárroz J, Luna-lario P, Iglesias-Fernández MD, Hernáez- Goñi P. Contribución del cerebelo a los procesos cognitivos/ : avances actuales. Rev Neurol 2011; 53: 301-15.
Nudo RJ. Neurophysiology of Motor Skill Learning. In: Byrne JH, ed. Learning and Memory: A Comprehensive Reference. Academic Press; 2008.
Boecker H, Jankowski J, Ditter P, Scheef L. A role of the basal ganglia and midbrain nuclei for initiation of motor sequences. Neuroimage 2008; 39: 1356-69.
Mathangi DC, Namasivayam A. Effect of chronic protein restriction on motor co-ordination and brain neurotransmitters in albino rats. Food Chem Toxicol 2001; 39: 1039-43.
Toma K, Ozawa M, Matsuo K, Nakai T, Fukuyama H, Sato S. The role of the human supplementary motor area in reactive motor operation. Neurosci Lett 2003; 344: 177-80.
Best JR. Effects of physical activity on children’s executive function: Contributions of experimental research on aerobic exercise. Dev Rev 2010; 30: 331-51.
Lee K-M, Chang K-H, Roh J-K. Subregions within the Supplementary Motor Area Activated at Different Stages of Movement Preparation and Execution. Neuroimage 1999; 9: 117-23.
Macar F, Anton J-L, Bonnet M, Vidal F. Timing functions of the supplementary motor area: an event-related fMRI study. Cogn Brain Res 2004; 21: 206-15.
Kantak SS, Winstein CJ. Learning-performance distinction and memory processes for motor skills: A focused review and perspective. Behav Brain Res 2012; 228: 219-31.
Kantak SS, Sullivan KJ, Fisher BE, Knowlton BJ, Winstein CJ. Neural substrates of motor memory consolidation depend on practice structure. Nat Neurosci 2010; 13: 923-5.
Tremblay P, Sato M, Small SL. TMS-induced modulation of action sentence priming in the ventral premotor cortex. Neuropsychologia 2012; 50: 319-26.
Pellegrini AM, Andrade EC, Teixeira LA. Attending to the nonpreferred hand improves bimanual coordination in children. Hum Mov Sci 2004; 23: 447-60.
Serrien DJ. Coordination constraints during bimanual versus unimanual performance conditions. Neuropsychologia 2008; 46: 419-25.
Afifi AK. The basal ganglia: a neural network with more than motor function. Semin Pediatr Neurol 2003; 10: 3-10.
Jeljeli M, Strazielle C, Caston J, Lalonde R. Effects of electrolytic lesions of the lateral pallidum on motor coordination, spatial learning, and regional brain variations of cytochrome oxidase activity in rats. Behav Brain Res 1999; 102: 61-71.
Holschneider DP, Yang J, Guo Y, Maarek J-MI. Reorganization of functional brain maps after exercise training: Importance of cerebellarthalamic- cortical pathway. Brain Res 2007; 1184: 96-107.
Bellissimo MI, Kouzmine I, Ferro MM, de Oliveira BH, Canteras NS, Da Cunha C. Is the unilateral lesion of the left substantia nigra pars compacta sufficient to induce working memory impairment in rats?. Neurobiol Learn Mem 2004; 82: 150-8.
Bortolanza M, Wietzikoski EC, Boschen SL, Dombrowski PA, Latimer M, Maclaren DA, et al. Functional disconnection of the substantia nigra pars compacta from the pedunculopontine nucleus impairs learning of a conditioned avoidance task. Neurobiol Learn Mem 2010; 94: 229-39.
Braga R, Kouzmine I, Canteras NS, Da Cunha C. Lesion of the substantia nigra, pars compacta impairs delayed alternation in a Ymaze in rats. Exp Neurol 2005; 192: 134-41.
Ferro MM, Bellissimo MI, Anselmo-Franci JA, Angellucci ME, Canteras NS, Da Cunha C. Comparison of bilaterally 6-OHDA- and MPTP-lesioned rats as models of the early phase of Parkinson’s disease: histological, neurochemical, motor and memory alterations. J Neurosci Methods 2005; 148: 78-87.
Allen G, Müller RA, Courchesne E. Cerebellar function in autism: functional magnetic resonance image activation during a simple motor task. Biol Psychiatry 2004; 56: 269-78.
Diedrichsen J. A spatially unbiased atlas template of the human cerebellum. Neuroimage 2006; 33: 127-38.
Doya K. Complementary roles of basal ganglia and cerebellum in learning and motor control. Curr Opin Neurobiol 2000; 10: 732-9.
Allen G. Cerebellar contributions to autism spectrum disorders. Clin Neurosci Res 2006; 6: 195-207.
Courchesne E, Townsend J, Akshoomoff N, Saitoh O, Yeung- Courchesne R, Lincoln AJ, et al. Impairment in shifting attention in autistic and cerebellar patients. Behav Neurosci 1994; 108: 848-65.
Penhune VB, Doyon J. Cerebellum and M1 interaction during early learning of timed motor sequences. Neuroimage 2005; 26: 801-12.
Kleim JA, Hogg TM, VandenBerg PM, Cooper NR, Bruneau R, Remple M. Cortical synaptogenesis and motor map reorganization occur during late, but not early, phase of motor skill learning. J Neurosci 2004; 24: 628-33.
Cotterill RM. Cooperation of the basal ganglia, cerebellum, sensory cerebrum and hippocampus: possible implications for cognition, consciousness, intelligence and creativity. Prog Neurobiol 2001; 64: 1-33.
Derksen MJ, Ward NL, Hartle KD, Ivanco TL. MAP2 and synaptophysin protein expression following motor learning suggests dynamic regulation and distinct alterations coinciding with synaptogenesis. Neurobiol Learn Mem 2007; 87: 404-15. Acevedo-Triana CA, et al. Efectos del ejercicio y la actividad motora Rev Mex Neuroci Enero-Febrero, 2014; 15(1): 36-53 53
Kleim JA, Bruneau R, Calder K, Pocock D, VandenBerg PM, MacDonald E, et al. Functional Organization of Adult Motor Cortex Is Dependent upon Continued Protein Synthesis. Neuron 2003; 40: 167-76.
Christopherson KS, Ullian EM, Stokes CC, Mullowney CE, Hell JW, Agah A, et al. Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 2005; 120: 421-33.
Hughes EG, Elmariah SB, Balice-Gordon RJ. Astrocyte secreted proteins selectively increase hippocampal GABAergic axon length, branching, and synaptogenesis. Mol Cell Neurosci 2010; 43: 136-45.
Xu J, Xiao N, Xia J. Thrombospondin 1 accelerates synaptogenesis in hippocampal neurons through neuroligin 1. Nat. Neurosci 2010; 13: 22-4.
Pereira AC, Huddleston DE, Brickman AM, Sosunov AA, Hen R, McKhann GM, et al. An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc Natl Acad Sci USA 2007; 104: 5638-43.
Rossini PM, Caramia MD, Iani C, Desiato MT, Sciarretta G, Bernardi G. Magnetic transcranial stimulation in healthy humans: influence on the behavior of upper limb motor units. Brain Res 1995; 676: 314-24.
Kristeva-Feige R, Rossi S, Pizzella V, Sabato A, Tecchio F, Feige B, et al. Changes in movement-related brain activity during transient deafferentation: a neuromagnetic study. Brain Res 1996; 714: 201-8.
Glasper ER, Gould E. Sexual experience restores age-related decline in adult neurogenesis and hippocampal function. Hippocampus 2013; 23: 303-12.
Jin K, Wang X, Xie L, Mao XO, Zhu W, Wang Y, et al. Evidence for stroke-induced neurogenesis in the human brain. Proc Natl Acad Sci USA 2006; 103: 13198-202.
Jin K, Peel AL, Mao XO, Xie L, Cottrell BA, Henshall DC, et al. Increased hippocampal neurogenesis in Alzheimer’s disease. Proc Natl Acad Sci USA 2004; 101: 343-7.
Nelson AD, Svendsen CN. Low concentrations of extracellular FGF- 2 are sufficient but not essential for neurogenesis from human neural progenitor cells. Mol Cell Neurosci 2006; 33: 29-35.