2004, Número 2
<< Anterior Siguiente >>
Rev Mex Ing Biomed 2004; 25 (2)
Una descripción de la maduración del caminado de los niños mediante parámetros del análisis multifractal
Muñoz DA, Angulo BF, Río CL
Idioma: Español
Referencias bibliográficas: 33
Paginas: 120-128
Archivo PDF: 117.19 Kb.
RESUMEN
Las series de tiempo del intervalo de paso en el caminado humano normal se caracterizan por tener ligeras fluctuaciones multifractales. En este trabajo se discuten las propiedades multifractales de tales series de niños sanos comparadas con las de sujetos jóvenes sanos. El máximo, asimetría y ancho del espectro multifractal se han usado para medir la complejidad de las series de tiempo de caminado. Las series de niños pequeños tienen espectros multifractales cuya anchura disminuye según la edad del niño se incrementa, hasta que tales anchos se acercan a los de los jóvenes sanos. Los resultados indican que la maduración de la dinámica del caminado no está completamente desarrollada incluso a los 7 años de edad, es hasta los 11 a 14 años que la dinámica del caminado se aproxima a los valores observados en adultos jóvenes sanos. Un análisis de asimetría muestra que los espectros de los jóvenes son casi simétricos, los espectros de los niños pequeños son muy asimétricos, los niños menores de 7 años tienen un espectro desviado hacia la derecha y llega a ser casi simétrico según la edad se incrementa. Se discuten las posibles aplicaciones clínicas del análisis multifractal de las series de tiempo de caminado.
REFERENCIAS (EN ESTE ARTÍCULO)
Sánchez J, Prat J, Hoyos V, Viosca E, Soler E, Cortés A, Comín A, La Fuente R, Vera P. Biomecánica de la marcha humana normal y patológica. Instituto de Biomecánica de Valencia. España, IBV, 1993.
Glifford G, Hughes JA. A gait analysis system in clinical practice. J Biom Eng 1983; 5: 297-301.
Crowe A, Shiereck P, Ruud W, Keesen W. Characterization of human gait by mean of the body center of mass oscillations derived from ground reaction forces. IEEE transactions on bio-medical engineering. 1995; 42(3): 293-303.
Gard SA, Childress DS. The influence of the Stance-Phase Knee Flexion in the Vertical Displacement of the Trunk During Normal Walking. Arch Phys Med and Rehabili 1999; 80(1): 26-32.
Kerrigan DC, Della Croce U, Marciello M, Riley PO. A refined view of the determinants of gait: significance of heel rise. Arch Phys Med Rehabili 2000; 81: 1077-80.
Hausdorff JM, Zemany L, Peng C-K, Goldberger AL. Maturation of gait dynamics: stride to stride variability and its temporal organization in children. J Appl Physiol 1999; 86(3): 1040-47.
Shumway-Cook A, Woollcacott MH. Motor Control Theory and Practical Applications. MD: Williams and Wilkins, Baltimore, 1995.
Beck RJ, Andriacchi TP, Kuo KN, Fermier RW, Galante JO. Changes in the gait patterns of growing. J Bone Joint Surg Am 1981; 63: 1452-57.
Sutherland DH, Olshen RA, Cooper L, Woo SL. The development of mature gait. J Bone Joint Surg Am 1980; 62: 336-53.
Hausdorff JM, Peng C-K, Ladin Z, Wei JY, Goldberger AL. Is walking a random walk? Evidence for long-range correlations in the stride interval of human gait. J Appl Physiol 1995; 78: 349-58.
Hausdorff JM, Purdon PL, Peng C-K, Ladin Z, Wei JY, Goldberger AL. Fractal dynamics of human gait: stability of long-range correlations in stride interval fluctuations. J Appl Physiol 1996; 80: 1448-57.
Hausdorff JM, Mitchell SL, Firtion R, Peng C-K, Cudkowicz ME, Wei JY, Goldberger AL. Altered fractal dynamics of gait: reduce stride interval correlations with aging and Huntington’s disease. J Appl Physiol 1997; 82: 262-69.
Muñoz DA, Del Río CJL, Angulo BF. Fractal and multifractal analysis of human gait AIP Conference Proceedings 2003; 682(1): 243-50.
Mandelbrot BB. The fractal geometry of nature. W. H. Freeman, New York, 1982.
Bolis CL, Licinio J, eds. The Autonomic Nervous System. World Health Organization, Geneva, 1999.
Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PCh, Mark RG, Mietus JE, Moody GB, Peng C-K, Stanley HE. PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. Circulation 2000; 101(23): e215-e220. http://circ.ahajournals.org/cgi/content/full/101/23/e215.
Muñoz DA, Angulo-Brown F, Del Río CJL, Calleja QE. Fractal analysis of human gait: old and young, healthy and ill subjects. Rev Mex Fís 2004. Accepted for publication.
Halsey TC, Jensen MH, Kadanoff LP, Procaccia I, Shraiman BI. Fractal measures and their singularities: the characterization of strange sets. Phys Rev A 1986; 33: 1141.
De Arcangelis L, Redner S, Coniglio A. Phys Rev B 1986; 34: 4656.
Menevau C, Sreenivasan KR. Phys Rev Lett 1987; 59: 1424.
Feder J. Fractals. Plenum Press, New York, 1988.
Bunde A, Knopp J, Schellnhuber HJ, eds. The Science of Disasters. Springer-Verlag, Germany, 2002.
Ivanov PCh, Nunes Amaral A, Goldberger AL, Stanley HE. Stochastic feedback and the regulation of biological rhythms. Europhys Lett 1998; 43(4): 363-68.
Stanley HE, Amaral LAN, Goldberger AL, Havlin S, Ivanov PCh, Peng C-K. Statistical physics and physiology: Monofractal and multifractal approaches. Physica A 1999; 270: 309-324.
Del Río CJL, Muñoz DA. Multifractality in physiological time series. AIP Conference Proceedings 2002; 630(1): 191-201.
Muñoz DA, Almanza VVH, Del Río CJL. Multifractal analysis of aging and complexity in heartbeat time series. AIP Conference Proceedings 2002; 724(1): 186-191.
Ashkenazy Y, Hausdorff JM, Ivanov PCh, Stanley HE. A stochastic model of human gait dynamics, Physica A 2002; 316: 662-70.
Muñoz DA, Del Río CJL, Angulo BF. Multifractal analysis of aging, illness and complexity in human gait time series. Proceedings of the World Congress on Medical Physics and Biomedical Engineering, Sidney Australia, 2003, ISBN 187704040142, paper No. 3179.
West BJ, Scafetta N. Nonlinear dynamical model of human gait. Phys Rev E 2003: 67, 051917 (1-10).
Chhabra AB, Menevau C, Jensen RV, Sreenivasan KR. Extraction of underlying multiplicative processes from multifractals via the thermodynamic formalism. Phys Rev A 1989; 40(8): 4593-4611.
Chhabra A, Jensen RV. Direct determination of the f(a) singularity spectrum. Phys Rev Lett 1989; 62(12): 1327-30.
Chhabra AB, Menevau C, Jensen RV, Sreenivasan KR. Direct determination of the f(a) singularity spectrum and its application to fully developed turbulence. Phys Rev A 1989; 40: 5284-94.
Telesca L, Lapenna V, Macchiato M. Mono and multifractal investigation of scaling properties in temporal patterns of seismic sequences. Chaos, Solitons and Fractals 2004; 19: 1-15.