2014, Número 1
<< Anterior Siguiente >>
TIP Rev Esp Cienc Quim Biol 2014; 17 (1)
Los sistemas de dos componentes: circuitos moleculares versátiles
Barba-Ostria CA
Idioma: Español
Referencias bibliográficas: 111
Paginas: 62-76
Archivo PDF: 475.74 Kb.
RESUMEN
Para sobrevivir, los organismos deben adaptarse a cambios ambientales repentinos que ejercen una
presión selectiva y por lo tanto sus posibilidades de supervivencia, dependen de su capacidad para
responder en forma rápida y precisa. La adaptación a estos cambios está estrechamente ligada a la
correcta percepción y transmisión de los estímulos, así como a la generación de respuestas apropiadas.
En diferentes bacterias, hongos, plantas y mohos mucilaginosos, los sistemas de dos componentes (SDC)
permiten regular su fisiología de acuerdo a las condiciones ambientales. En estos circuitos moleculares,
el mecanismo de comunicación entre módulos es la fosforilación consecutiva de residuos de His y Asp
localizados en dos proteínas: una cinasa sensora (CS) y un regulador de la respuesta (RR). En este artículo
de revisión, se destacan las características más relevantes de los SDC, así como su participación como
sistemas de percepción-respuesta a muy diversos estímulos. Además se resaltan las diferencias entre los
SDC en procariontes y eucariontes. Finalmente se ejemplifican algunas diferencias usando los circuitos
de regulación osmótica de
Escherichia coli y
Saccharomyces cerevisiae.
REFERENCIAS (EN ESTE ARTÍCULO)
Stock, A.M., Robinson, V.L. & Goudreau, P.N. Two-Component Signal Transduction. Annual Review of Biochemistry 69, 183-215, doi:doi:10.1146/annurev.biochem.69.1.183 (2000).
Grebe, T.W. & Stock, J.B. The histidine protein kinase superfamily. Adv. Microb. Physiol. 41, 139-227 (1999).
Stock, J.B., Ninfa, A.J. & Stock, A.M. Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol. Rev. 53, 450-490 (1989).
Parkinson, J.S. & Kofoid, E.C. Communication modules in bacterial signaling proteins. Annu. Rev. Genet. 26, 71-112, doi:10.1146/ annurev.ge.26.120192.000443 (1992).
Hoch, J. & Silhavy, T.J. Two-Component Signal Transduction (ASM Press, 1995).
Appleby, J.L., Parkinson, J.S. & Bourret, R.B. Signal transduction via the multi-step phosphorelay: not necessarily a road less traveled. Cell 86, 845-848, doi:S0092-8674(00)80158-0 [pii] (1996).
Georgellis, D., Lynch, A.S.& Lin, E.C. In vitro phosphorylation study of the arc two-component signal transduction system of Escherichia coli. J. Bacteriol. 179, 5429-5435 (1997).
Álvarez, A.F. & Georgellis, D. In vitro and in vivo analysis of the ArcB/A redox signaling pathway. Methods Enzymol. 471, 205-228, doi:S0076-6879(10)71012-0 [pii]10.1016/S0076- 6879(10)71012-0 (2010).
Peña-Sandoval, G.R. & Georgellis, D. The ArcB sensor kinase of Escherichia coli autophosphorylates by an intramolecular reaction. J. Bacteriol. 192, 1735-1739, doi:JB.01401-09 [pii]10.1128/JB.01401-09 (2010).
Galperin, M.Y. Diversity of structure and function of response regulator output domains. Curr. Opin. Microbiol. 13, 150-159, doi:10.1016/j.mib.2010.01.005S1369-5274(10)00010-X [pii] (2010).
Gao, R., Mack, T.R. & Stock, A.M. Bacterial response regulators: versatile regulatory strategies from common domains. Trends Biochem. Sci. 32, 225-234, doi:S0968-0004(07)00058-8 [pii]10.1016/j.tibs.2007.03.002 (2007).
Wadhams, G.H. & Armitage, J.P. Making sense of it all: bacterial chemotaxis. Nat. Rev. Mol. Cell Biol. 5, 1024-1037, doi:nrm1524 [pii]10.1038/nrm1524 (2004).
Zhou, Y., Gottesman, S., Hoskins, J.R., Maurizi, M.R. & Wickner, S. The RssB response regulator directly targets sigma(S) for degradation by ClpXP. Genes Dev. 15, 627-637, doi:10.1101/ gad.864401 (2001).
Bougdour, A., Cunning, C., Baptiste, P.J., Elliott, T. & Gottesman, S. Multiple pathways for regulation of sigmaS (RpoS) stability in Escherichia coli via the action of multiple anti-adaptors. Mol. Microbiol. 68, 298-313 (2008).
Capra, E.J., Perchuk, B.S., Skerker, J.M. & Laub, M.T. Adaptive mutations that prevent crosstalk enable the expansion of paralogous signaling protein families. Cell 150, 222-232, doi:10.1016/j.cell.2012.05.033S0092-8674(12)00654-X [pii] (2012).
Forst, S.A. & Roberts, D.L. Signal transduction by the EnvZ- OmpR phosphotransfer system in bacteria. Res. Microbiol. 145, 63-73 (1994).
Posas, F. et al. Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 “two-component” osmosensor. Cell 86, 865-875 (1996).
Álvarez, A.N.F., Rodríguez, C. & Georgellis, D. Ubiquinone and menaquinone electron-carriers represent the Ying and Yang in the redox regulation of the ArcB sensor kinase. Journal of Bacteriology, doi:10.1128/jb.00406-13 (2013).
Georgellis, D., Kwon, O. & Lin, E.C. Quinones as the redox signal for the arc two-component system of bacteria. Science 292, 2314-2316, doi:10.1126/science.1059361292/5525/2314 [pii] (2001).
Morigasaki, S., Shimada, K., Ikner, A., Yanagida, M. & Shiozaki, K. Glycolytic enzyme GAPDH promotes peroxide stress signaling through multistep phosphorelay to a MAPK cascade. Mol. Cell 30, 108-113 (2008).
Groisman, E.A., Chiao, E., Lipps, C.J. & Heffron, F. Salmonella typhimurium phoP virulence gene is a transcriptional regulator. Proc. Natl. Acad. Sci. USA 86, 7077-7081 (1989).
Ninfa, A.J. & Magasanik, B. Covalent modification of the glnG product, NRI, by the glnL product, NRII, regulates the transcription of the glnALG operon in Escherichia coli. Proc. Natl. Acad. Sci. USA 83, 5909-5913 (1986).
Nohno, T., Noji, S., Taniguchi, S. & Saito, T. The narX and narL genes encoding the nitrate-sensing regulators of Escherichia coli are homologous to a family of prokaryotic two-component regulatory genes. Nucleic Acids Res. 17, 2947-2957 (1989).
Lau, P.C. et al. A bacterial basic region leucine zipper histidine kinase regulating toluene degradation. Proc. Natl. Acad. Sci. USA 94, 1453-1458 (1997).
Purcell, E.B., Siegal-Gaskins, D., Rawling, D.C., Fiebig, A. & Crosson, S. A photosensory two-component system regulates bacterial cell attachment. Proc. Natl. Acad. Sci. USA 104, 18241-18246, doi:0705887104 [pii]10.1073/pnas.0705887104 (2007).
Blumenstein, A. et al. The Aspergillus nidulans phytochrome FphA represses sexual development in red light. Curr. Biol. 15, 1833-1838, doi:S0960-9822(05)01020-1 [pii]10.1016/j. cub.2005.08.061 (2005).
Jiang, M., Shao, W., Perego, M. & Hoch, J.A. Multiple histidine kinases regulate entry into stationary phase and sporulation in Bacillus subtilis. Mol. Microbiol. 38, 535-542, doi:mmi2148 [pii] (2000).
Perego, M. & Hoch, J.A. Cell-cell communication regulates the effects of protein aspartate phosphatases on the phosphorelay controlling development in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 93, 1549-1553 (1996).
Hutchings, M.I., Hong, H.J. & Buttner, M.J. The vancomycin resistance VanRS two-component signal transduction system of Streptomyces coelicolor. Molecular Microbiology 59, 923- 935, doi:doi:10.1111/j.1365-2958.2005.04953.x (2006).
Bourret, R.B., Hess, J.F., Borkovich, K.A., Pakula, A.A. & Simon, M.I. Protein phosphorylation in chemotaxis and two- component regulatory systems of bacteria. J. Biol. Chem. 264, 7085-7088 (1989).
Jagadeesan, S., Mann, P., Schink, C.W. & Higgs, P.I. A novel “four- component” two-component signal transduction mechanism regulates developmental progression in Myxococcus xanthus. J. Biol. Chem.284, 21435-21445, doi:M109.033415 [pii]10.1074/ jbc.M109.033415 (2009).
Barba-Ostria, C., Lledias, F. & Georgellis, D. The Neurospora crassa DCC-1 Protein, a Putative Histidine Kinase, Is Required for Normal Sexual and Asexual Development and Carotenogenesis. Eukaryot. Cell 10, 1733-1739, doi:EC.05223-11 [pii]10.1128/ EC.05223-11 (2011).
Cottarel, G. Mcs4, a two-component system response regulator homologue, regulates the Schizosaccharomyces pombe cell cycle control. Genetics 147, 1043-1051 (1997).
Beier, D. & Gross, R. Regulation of bacterial virulence by two- component systems. Curr. Opin. Microbiol.9, 143-152 (2006).
Nemecek, J.C., Wuthrich, M. & Klein, B.S. Global control of dimorphism and virulence in fungi. Science 312, 583-588, doi:312/5773/583 [pii]10.1126/science.1124105 (2006).
Stepanova, A.N. & Alonso, J.M. Arabidopsis ethylene signaling pathway. Sci. STKE 2005, cm4, doi:stke.2762005cm4 [pii]10.1126/stke.2762005cm4 (2005).
Oka, A., Sakai, H. & Iwakoshi, S. His-Asp phosphorelay signal transduction in higher plants: receptors and response regulators for cytokinin signaling in Arabidopsis thaliana. Genes Genet. Syst. 77, 383-391 (2002).
Hwang, I. & Sheen, J. Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature 413, 383-389, doi:10.1038/3509650035096500 [pii] (2001).
Yeh, K.C. & Lagarias, J.C. Eukaryotic phytochromes: light- regulated serine/threonine protein kinases with histidine kinase ancestry. Proc. Natl. Acad. Sci. USA 95, 13976-13981 (1998).
Matsushika, A., Makino, S., Kojima, M. & Mizuno, T. Circadian waves of expression of the APRR1/TOC1 family of pseudo- response regulators in Arabidopsis thaliana: insight into the plant circadian clock. Plant Cell Physiol.41, 1002-1012 (2000).
Makino, S. et al. Genes encoding pseudo-response regulators: insight into His-to-Asp phosphorelay and circadian rhythm in Arabidopsis thaliana. Plant Cell Physiol. 41, 791-803 (2000).
Ninfa, A.J. et al. Crosstalk between bacterial chemotaxis signal transduction proteins and regulators of transcription of the Ntr regulon: evidence that nitrogen assimilation and chemotaxis are controlled by a common phosphotransfer mechanism. Proceedings of the National Academy of Sciences 85, 5492- 5496 (1988).
Yamamoto, K. et al. Functional characterization in vitro of all twocomponent signal transduction systems from Escherichia coli. J. Biol. Chem.280, 1448-1456, doi:M410104200 [pii]10.1074/ jbc.M410104200 (2005).
Skerker, J.M., Prasol, M.S., Perchuk, B.S., Biondi, E.G. & Laub, M.T. Two-component signal transduction pathways regulating growth and cell cycle progression in a bacterium: a system- level analysis. PLoS Biol 3, e334, doi:05-PLBI-RA-0427R2 [pii]10.1371/journal.pbio.0030334 (2005).
Wanner, B.L. Is cross regulation by phosphorylation of two- component response regulator proteins important in bacteria? J. Bacteriol. 174, 2053-2058 (1992).
Galperin, M.Y. A census of membrane-bound and intracellular signal transduction proteins in bacteria: bacterial IQ, extroverts and introverts. BMC Microbiol. 5, 35, doi:1471-2180-5-35 [pii]10.1186/1471-2180-5-35 (2005).
Ulrich, L.E. & Zhulin, I.B. The MiST2 database: a comprehensive genomics resource on microbial signal transduction. Nucleic Acids Res.38, D401-407, doi:10.1093/nar/gkp940gkp940 [pii] (2010).
Leonardo, M.R. & Forst, S. Re-examination of the role of the periplasmic domain of EnvZ in sensing of osmolarity signals in Escherichia coli. Mol. Microbiol. 22, 405-413 (1996).
Forst, S., Comeau, D., Norioka, S. & Inouye, M. Localization and membrane topology of EnvZ, a protein involved in osmoregulation of OmpF and OmpC in Escherichia coli. J. Biol. Chem. 262, 16433-16438 (1987).
Roberts, D.L., Bennett, D.W. & Forst, S.A. Identification of the site of phosphorylation on the osmosensor, EnvZ, of Escherichia coli. J. Biol. Chem. 269, 8728-8733 (1994).
Delgado, J., Forst, S., Harlocker, S. & Inouye, M. Identification of a phosphorylation site and functional analysis of conserved aspartic acid residues of OmpR, a transcriptional activator for ompF and ompC in Escherichia coli. Mol. Microbiol. 10, 1037-1047 (1993).
Head, C.G., Tardy, A. & Kenney, L.J. Relative binding affinities of OmpR and OmpR-phosphate at the ompF and ompC regulatory sites. J. Mol. Biol. 281, 857-870, doi:S0022-2836(98)91985-4 [pii]10.1006/jmbi.1998.1985 (1998).
Yoshida, T., Qin, L., Egger, L.A. & Inouye, M. Transcription regulation of ompF and ompC by a single transcription factor, OmpR. J. Biol. Chem. 281, 17114-17123, doi:M602112200 [pii]10.1074/jbc.M602112200 (2006).
Ferrario, M. et al. The leucine-responsive regulatory protein of Escherichia coli negatively regulates transcription of ompC and micF and positively regulates translation of ompF. J. Bacteriol. 177, 103-113 (1995).
Olivera, B.C., Ugalde, E. & Martínez-Antonio, A. Regulatory dynamics of standard two-component systems in bacteria. J. Theor. Biol. 264, 560-569, doi:10.1016/j.jtbi.2010.02.00 8S0022-5193(10)00075-5 [pii] (2010).
Mitrophanov, A.Y. & Groisman, E.A. Signal integration in bacterial two-component regulatory systems. Genes Dev.22, 2601-2611, doi:10.1101/gad.170030822/19/2601 [pii] (2008).
Burkholder, W.F., Kurtser, I. & Grossman, A.D. Replication initiation proteins regulate a developmental checkpoint in Bacillus subtilis. Cell 104, 269-279, doi:S0092-8674(01)00211-2 [pii] (2001).
Wang, L., Grau, R., Perego, M. & Hoch, J.A. A novel histidine kinase inhibitor regulating development in Bacillus subtilis. Genes Dev. 11, 2569-2579 (1997).
Perego, M. & Brannigan, J.A. Pentapeptide regulation of aspartyl-phosphate phosphatases. Peptides 22, 1541-1547, doi:S0196-9781(01)00490-9 [pii] (2001).
Smits, W.K. et al. Temporal separation of distinct differentiation pathways by a dual specificity Rap-Phr system in Bacillus subtilis. Mol. Microbiol. 65, 103-120, doi:MMI5776 [pii]10.1111/j.1365-2958.2007.05776.x (2007).
Kato, A. & Groisman, E.A. Connecting two-component regulatory systems by a protein that protects a response regulator from dephosphorylation by its cognate sensor. Genes Dev. 18, 2302- 2313, doi:10.1101/gad.123080418/18/2302 [pii] (2004).
Kato, A., Latifi, T. & Groisman, E.A. Closing the loop: the PmrA/PmrB two-component system negatively controls expression of its posttranscriptional activator PmrD. Proc. Natl. Acad. Sci. USA 100, 4706-4711, doi:10.1073/ pnas.08368371000836837100 [pii] (2003).
Kox, L.F., Wosten, M.M. & Groisman, E.A. A small protein that mediates the activation of a two-component system by another two-component system. EMBO J.19, 1861-1872, doi:10.1093/ emboj/19.8.1861 (2000).
Eguchi, Y. et al. B1500, a small membrane protein, connects the two-component systems EvgS/EvgA and PhoQ/PhoP in Escherichia coli. Proc. Natl. Acad. Sci. USA104, 18712-18717, doi:0705768104 [pii]10.1073/pnas.0705768104 (2007).
Pratt, L.A., Hsing, W., Gibson, K.E. & Silhavy, T.J. From acids to osmZ: multiple factors influence synthesis of the OmpF and OmpC porins in Escherichia coli. Mol. Microbiol. 20, 911-917 (1996).
Romling, U., Sierralta, W.D., Eriksson, K. & Normark, S. Multicellular and aggregative behaviour of Salmonella typhimurium strains is controlled by mutations in the agfD promoter. Mol. Microbiol 28, 249-264 (1998).
Hung, D.L., Raivio, T.L., Jones, C.H., Silhavy, T.J. & Hultgren, S.J. Cpx signaling pathway monitors biogenesis and affects assembly and expression of P pili. EMBO J. 20, 1508-1518, doi:10.1093/emboj/20.7.1508 (2001).
Dorel, C., Vidal, O., Prigent-Combaret, C., Vallet, I. & Lejeune, P. Involvement of the Cpx signal transduction pathway of E. coli in biofilm formation. FEMS Microbiol. Lett.178, 169-175, doi:S0378-1097(99)00347-X [pii] (1999).
Jubelin, G. et al. CpxR/OmpR interplay regulates curli gene expression in response to osmolarity in Escherichia coli. J. Bacteriol. 187, 2038-2049, doi:187/6/2038 [pii]10.1128/ JB.187.6.2038-2049.2005 (2005).
Prigent-Combaret, C. et al. Complex regulatory network controls initial adhesion and biofilm formation in Escherichia coli via regulation of the csgD gene. J. Bacteriol. 183, 7213-7223, doi:10.1128/JB.183.24.7213-7223.2001 (2001).
Prigent-Combaret, C., Vidal, O., Dorel, C. & Lejeune, P. Abiotic surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli. J. Bacteriol. 181, 5993-6002 (1999).
Majdalani, N. & Gottesman, S. The Rcs phosphorelay: a complex signal transduction system. Annu. Rev. Microbiol. 59, 379-405, doi:10.1146/annurev.micro.59.050405.101230 (2005).
Majdalani, N., Heck, M., Stout, V. & Gottesman, S. Role of RcsF in signaling to the Rcs phosphorelay pathway in Escherichia coli. J. Bacteriol. 187, 6770-6778, doi:187/19/6770 [pii]10.1128/ JB.187.19.6770-6778.2005 (2005).
Ferrieres, L. & Clarke, D.J. The RcsC sensor kinase is required for normal biofilm formation in Escherichia coli K-12 and controls the expression of a regulon in response to growth on a solid surface. Mol. Microbiol. 50, 1665-1682, doi:3815 [pii] (2003).
Vianney, A. et al. Escherichia coli tol and rcs genes participate in the complex network affecting curli synthesis. Microbiology 151, 2487-2497, doi:151/7/2487 [pii]10.1099/mic.0.27913-0 (2005).
Gerstel, U. & Romling, U. The csgD promoter, a control unit for biofilm formation in Salmonella typhimurium. Res. Microbiol. 154, 659-667, doi:S0923-2508(03)00199-2 [pii]10.1016/j. resmic.2003.08.005 (2003).
Gerstel, U., Park, C. & Romling, U. Complex regulation of csgD promoter activity by global regulatory proteins. Mol. Microbiol. 49, 639-654, doi:3594 [pii] (2003).
Arnqvist, A., Olsen, A. & Normark, S. Sigma S-dependent growth- phase induction of the csgBA promoter in Escherichia coli can be achieved in vivo by sigma 70 in the absence of the nucleoid-associated protein H-NS. Mol. Microbiol. 13, 1021- 1032 (1994).
Cunin, R., Glansdorff, N., Pierard, A. & Stalon, V. Biosynthesis and metabolism of arginine in bacteria. Microbiol. Rev. 50, 314-352 (1986).
Burne, R.A. & Marquis, R.E. Alkali production by oral bacteria and protection against dental caries. FEMS Microbiol. Lett. 193, 1-6, doi:S0378-1097(00)00438-9 [pii] (2000).
Liu, Y., Dong, Y., Chen, Y.Y. & Burne, R.A. Environmental and growth phase regulation of the Streptococcus gordonii arginine deiminase genes. Appl. Environ. Microbiol. 74, 5023-5030, doi:10.1128/AEM.00556-08AEM.00556-08 [pii] (2008).
Liu, Y. & Burne, R.A. Multiple two-component systems modulate alkali generation in Streptococcus gordonii in response to environmental stresses. J. Bacteriol. 191, 7353-7362, doi:10.1128/JB.01053-09JB.01053-09 [pii] (2009).
Loomis, W. F., Shaulsky, G. & Wang, N. Histidine kinases in signal transduction pathways of eukaryotes. J. Cell Sci. 110 ( Pt 10), 1141-1145 (1997).
Wurgler-Murphy, S.M. & Saito, H. Two-component signal transducers and MAPK cascades. Trends Biochem. Sci. 22, 172-176, doi:S0968000497010360 [pii] (1997).
Urao, T., Yamaguchi-Shinozaki, K. & Shinozaki, K. Two- component systems in plant signal transduction. Trends Plant Sci. 5, 67-74, doi:S1360-1385(99)01542-3 [pii] (2000).
Catlett, N.L., Yoder, O.C. & Turgeon, B.G. Whole-genome analysis of two-component signal transduction genes in fungal pathogens. Eukaryot. Cell 2, 1151-1161 (2003).
Wuichet, K., Cantwell, B.J. & Zhulin, I.B. Evolution and phyletic distribution of two-component signal transduction systems. Curr. Opin. Microbiol. 13, 219-225, doi:10.1016/j.mib.2009. 12.011S1369-5274(10)00002-0 [pii] (2010).
Schaller, G.E., Shiu, S.H. & Armitage, J.P. Two-component systems and their co-option for eukaryotic signal transduction. Curr. Biol. 21, R320-330, doi:S0960-9822(11)00236-3 [pii]10.1016/j.cub.2011.02.045 (2011).
Borkovich, K.A. et al. Lessons from the Genome Sequence of Neurospora crassa: Tracing the Path from Genomic Blueprint to Multicellular Organism. Microbiol. Mol. Biol. Rev.68, 1-108, doi:10.1128/mmbr.68.1.1-108.2004 (2004).
Lu, J.M., Deschenes, R.J. & Fassler, J.S. Saccharomyces cerevisiae histidine phosphotransferase Ypd1p shuttles between the nucleus and cytoplasm for SLN1-dependent phosphorylation of Ssk1p and Skn7p. Eukaryot. Cell 2, 1304-1314 (2003).
Maeda, T., Wurgler-Murphy, S.M. & Saito, H. A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature 369, 242-245, doi:10.1038/369242a0 (1994).
Bahn, Y.S. Master and commander in fungal pathogens: the two- component system and the HOG signaling pathway. Eukaryot. Cell 7, 2017-2036, doi:10.1128/EC.00323-08EC.00323-08 [pii] (2008).
Catlett, N.L., Yoder, O.C. & Turgeon, B.G. Whole-Genome Analysis of Two-Component Signal Transduction Genes in Fungal Pathogens. Eukaryotic Cell 2, 1151-1161, doi:10.1128/ ec.2.6.1151-1161.2003 (2003).
Jones, C.A., Greer-Phillips, S.E. & Borkovich, K.A. The Response Regulator RRG-1 Functions Upstream of a Mitogen-activated Protein Kinase Pathway Impacting Asexual Development, Female Fertility, Osmotic Stress, and Fungicide Resistance in Neurospora crassa. Mol. Biol. Cell18, 2123-2136, doi:10.1091/ mbc.E06-03-0226 (2007).
Chang, C., Kwok, S.F., Bleecker, A.B. & Meyerowitz, E.M. Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science 262, 539-544 (1993).
Hua, J., Chang, C., Sun, Q. & Meyerowitz, E.M. Ethylene insensitivity conferred by Arabidopsis ERS gene. Science 269, 1712-1714 (1995).
He, X.J., Mulford, K.E. & Fassler, J.S. Oxidative stress function of the Saccharomyces cerevisiae Skn7 receiver domain. Eukaryot. Cell 8, 768-778, doi:10.1128/EC.00021-09EC.00021-09 [pii] (2009).
Li, S. et al. The yeast histidine protein kinase, Sln1p, mediates phosphotransfer to two response regulators, Ssk1p and Skn7p. EMBO J. 17, 6952-6962, doi:10.1093/emboj/17.23.6952 (1998).
Thomason, P.A. et al. An intersection of the cAMP/PKA and two-component signal transduction systems in Dictyostelium. EMBO J. 17, 2838-2845, doi:10.1093/emboj/17.10.2838 (1998).
Oehme, F. & Schuster, S.C. Osmotic stress-dependent serine phosphorylation of the histidine kinase homologue DokA. BMC Biochem. 2, 2 (2001).
Grefen, C. & Harter, K. Plant two-component systems: principles, functions, complexity and cross talk. Planta 219, 733-742 (2004).
Mizuno, T. Two-component phosphorelay signal transduction systems in plants: from hormone responses to circadian rhythms. Biosci. Biotechnol. Biochem. 69, 2263-2276 (2005).
Morgan, B.A. et al. The Skn7 response regulator controls gene expression in the oxidative stress response of the budding yeast Saccharomyces cerevisiae. EMBO J. 16, 1035-1044, doi:10.1093/emboj/16.5.1035 (1997).
Morgan, B.A., Bouquin, N., Merrill, G.F. & Johnston, L.H. A yeast transcription factor bypassing the requirement for SBF and DSC1/MBF in budding yeast has homology to bacterial signal transduction proteins. EMBO J. 14, 5679-5689 (1995).
Janiak-Spens, F., Cook, P.F. & West, A.H. Kinetic analysis of YPD1-dependent phosphotransfer reactions in the yeast osmoregulatory phosphorelay system. Biochemistry 44, 377- 386, doi:10.1021/bi048433s (2005).
Horie, T., Tatebayashi, K., Yamada, R. & Saito, H. Phosphorylated Ssk1 prevents unphosphorylated Ssk1 from activating the Ssk2 mitogen-activated protein kinase kinase kinase in the yeast high-osmolarity glycerol osmoregulatory pathway. Mol. Cell Biol. 28, 5172-5183, doi:MCB.00589-08 [pii]10.1128/ MCB.00589-08 (2008).
Kaserer, A.O., Andi, B., Cook, P.F. & West, A.H. Effects of osmolytes on the SLN1-YPD1-SSK1 phosphorelay system from Saccharomyces cerevisiae. Biochemistry 48, 8044-8050, doi:10.1021/bi900886g (2009).
Kaserer, A.O., Andi, B., Cook, P.F. & West, A.H. Kinetic studies of the yeast His-Asp phosphorelay signaling pathway. Methods Enzymol. 471, 59-75, doi:S0076-6879(10)71004-1 [pii]10.1016/S0076-6879(10)71004-1 (2010).
Fassler, J.S. & West, A.H. Genetic and biochemical analysis of the SLN1 pathway in Saccharomyces cerevisiae. Methods Enzymol. 471, 291-317, doi:S0076-6879(10)71016-8 [pii]10.1016/ S0076-6879(10)71016-8 (2010).
Dziarski, R., Kashyap, D.R. & Gupta, D. Mammalian peptidoglycan recognition proteins kill bacteria by activating two-component systems and modulate microbiome and inflammation. Microb. Drug Resist.18, 280-285, doi:10.1089/mdr.2012.0002 (2012).
Kashyap, D.R. et al. Peptidoglycan recognition proteins kill bacteria by activating protein-sensing two-component systems. Nat. Med. 17, 676-683, doi:10.1038/nm.2357nm.2357 [pii] (2011).