2013, Número 1
<< Anterior
Rev Med UV 2013; 13 (1)
El cerebro y la música
Lozano CO, Santos GS, García-García F
Idioma: Español
Referencias bibliográficas: 38
Paginas: 17-22
Archivo PDF: 463.61 Kb.
RESUMEN
Estudios realizados en el cerebro humano utilizando técnicas de
tomografía por emisión de positrones y resonancia magnética
funcional han mostrado que la percepción, procesamiento e
interpretación de la música implica la activación orquestada de
circuitos neuronales específicos en áreas de la corteza auditiva
y motora. De igual manera, la música produce al interior del
cerebro la activación de regiones anatómicas que forman
parte del sistema límbico y relacionadas con conductas como
la actividad sexual, ingesta de comida o el consumo de alguna
droga. En este contexto, el objetivo de la presente trabajo es
revisar las bases neuronales del procesamiento y ejecución de
la música.
REFERENCIAS (EN ESTE ARTÍCULO)
Zatorre RJ, Peretz I. The biological foundaons of music. New York: New York Academy of Sciences; 2001.
García-Casares N, Berthier M, Walsh S, González-Santos P. Modelo de cognición musical y amusia. Neurología 2011. doi:10.1016/j. nrl.2011.04.010
Diccionario de la lengua española. 22.a edición. Madrid: Espasa Calpe; 2001. Música.
Patel AD. Language, music, syntax and the brain. Nat Neurosci 2003; 6(7):674-81.
Luria AR, Tsetkova L, Futer D. Aphasia in a composer. J Neurol Sci 1995; 2(3):288-92.
Griffiths TD y col. Spaal and temporal auditory processing deficits following right hemisphere infarcon. A psychophysical study. Brain 1997; 120(Pt 5):785-94.
Barret KE, Barman SM, Boitano S, Brooks HL. Fisiología médica. México: McGraw-Hill Interamericana 2010;p.203-215.
Peretz I. Musical disorders. From behavior to genes. Curr Dir Psychol Sci 2008; 17:329-33.
Peretz I, Cummings S, Dubé MP. The genecs of congenital amusia (tone-deafness): a family-aggregaon study. Am J Hum Genet 2007; 81(3):582-8.
Peretz I, Braco E, Järvenpää, Tervaniemi M. The amusic brain: in tune, out of key, and unaware. Brain 2009; 132(Pt 5):1277-86.
Alossa N, Castelli L. Amusia and musical funconing. Eur Neurol 2009; 61(5):269-77.
Zatorre RJ, Chen JL, Penhune VB. When the brain plays music: Auditory-motor interacons in music percepon and producon. Nat Rev Neurosci 2007; 8(7):547-58.
Petacchi A, Laird AR, Fox PT, Bower JM. Cerebellum and auditory funcon: an ALE metaanalysis of funconal neuroimaging studies. Hum Brain Mapp 2005; 25(1):118–28.
Ramnani N, Passingham RE. Changes in the human brain during rhythm learning. J Cogn Neurosci 2001; 13(7):952–66.
Graybiel AM. The basal ganglia: learning new tricks and loving it. Curr Opin Neurobiol 2005; 15(6):638–44.
Bengtsson SL, Ehrsson HH, Forssberg H, Ullén F. Dissociang brain regions controlling the temporal and ordinal structure of learned movement sequences. Eur J Neurosci 2004; 19(9):2591–602.
Large EW, Palmer C. Perceiving temporal regularity in music. Cogn Sci 2002; 26(1):1–37.
Repp BH. Effects of auditory feedback deprivaon on expressive piano performance. Music Percept 1999; 16(4):409–38.
Salimpoor VN y cols. Anatomically disnct dopamine release during ancipaon and experience of peak emoon to music. Nat Neurosci 2011; 14(2):257-62.
Dalgleish T. The emoonal brain. Nat Rev. Neurosci 2004; 5:583-89.
Peretz I, Blood A, Penhune V y Zatrorre R. Corcal deafness to dissonnance. Brain 2001; 124(Pt 5):928-40.
Blood A, Zatorre R. Intensely pleasurable responses to music correlate with acvity in brain regions implicated in reward and emoon. Naonal Academy of Sciences 2001; 98(20):11818-23.
Blood A, Zatorre R, Bermudez P, Evans A. Emoonal responses to pleasant and unpleasant music correlate with acvity in paralimbic regions. Nat Neurosci 1999; 2(4):382-7.
Krumhansl CL. An Exploratory Study of Musical Emoons and Psychophysiology. Can J Exp Psychol, 1997; 51(4): 336-52.
Bernardi L, Porta C, Sleight P. Cardiovascular, cerebrovascular and respiratory changes induced by different types of music I musicians and non-musicians: the importance of silence. Heart 2006; 92(4): 445-52.
Cervellin G, Lippi G. From music-beat to beat: A journey in the complex interacons between music, brain and heart. Eur J Intern Med 2011; 22(4):371-4.
Zatorre R, McGill J. Music food of neuroscience? Nature 2005; 434(7031):312-5.
Rauscher FH, Shaw GL, Ky KN. Listening to Mozart enhances spaaltemporal reasoning: towards a neurophysiological basis. Neurosci Le 1995; 185(1):44-7.
McKelvie P, Low J. Listening to Mozart does not improve children’s spaal ability: final curtains for the Mozart effect. Br J Dev Psychol 2002; 20(2):241-58.
Ukkola LT. y col. Music aptude is associated with AVPR1AHaplotypes. PLoS one 2009; 4(5): 5534
Wieser HG, Hungerböhler H, Siegel AM. and Buck A. Musicogenic Epilepsy: Review of the Literature and Case Report with Ictal Single Photon Emission Computed Tomography. Epilepsia 1997; 38(2):200–7.
Buentello-García RM, Sentles-Madrid H, Juan-Orta DS, Alonso- Venegas MA. Trastornos neurológicos y música. Arch Neurocien 2011; 16(2):98-103.
Gelisse P, y cols. Ictal SPECT in a case of pure musicogenic epilepsy. Epilepc Disord 2003; 5(3):133-7.
Soria-Urios G, Duque P, García-Moreno JM. Música y cerebro: fundamentos neurocienficos y trastornos musicales. Rev Neurol 2011; 52(1):45-55.
Stewart L, Kriegstein KV, Warren JD, Warren JD, Griffiths TD. Music and the brain: disorders of musical listening. Brain 2006; 129(Pt 10):2533 53.
Griffiths TD. Musical hallucinosis in acquired deafness. Phenomenology and brain substrate. Brain 2000; 123(Pt 10):2065 76.
Stewart L, Walsh V. Congenital Amusia: All the Songs Sound the Same. Curr Biol 2002; 12(12):420-1.
Ramos S. Filosoa de la vida arsca. México: Editorial Espasa-Calpe Mexicana 1976: p.141.