2013, Número 3
Siguiente >>
Biotecnol Apl 2013; 30 (3)
La teranóstica y las imágenes moleculares: Nuevos conceptos y tecnologías para el desarrollo de fármacos
Cabal C, Darias D, González E, Musacchio A
Idioma: Ingles.
Referencias bibliográficas: 107
Paginas: 172-177
Archivo PDF: 196.58 Kb.
RESUMEN
En este artículo se discuten algunas de las bases, los retos y el uso de las imágenes moleculares y la teranóstica en un futuro cercano. Las imágenes moleculares, cuya evolución en los últimos años ha sido sorprendente, se han convertido en verdaderas herramientas para disminuir los costos y acelerar todas las etapas de los procesos de descubrimiento y desarrollo de nuevos fármacos. La integración de las actuales plataformas de la teranóstica con las tecnologías de imágenes ha abierto oportunidades novedosas y revolucionarias en la medicina y las industrias biotecnológicas y farmacéuticas. La estrategia de unir agentes diagnósticos y terapéuticos en una nanoplataforma
ofrece la posibilidad de diagnosticar, tratar y monitorear la respuesta terapéutica
in vivo a nivel molecular. Esto permite mejorar simultáneamente la evaluación, la optimización, el control y la eficacia de la distribución y liberación de los medicamentos. Estas formulaciones teranósticas también han incrementado la sensibilidad de las imágenes moleculares de resonancia magnética hasta algunos picomoles. Como conclusión se afirma que la conjugación de
complejos paramagnéticos con macromoléculas y nanoestructuras naturales flexibles es la vía más importante y rápida para obtener nuevas formulaciones teranósticas. Para optimizar los ensayos preclínicos y clínicos es necesario que desde el inicio se diseñen teniendo en cuenta las posibilidades de las tecnologías de imágenes. Los problemas complejos asociados con la medicina personalizada, la terapia combinada y la sincronización entre las acciones
diagnósticas y terapéuticas encuentran una excelente solución en el campo de la teranóstica.
REFERENCIAS (EN ESTE ARTÍCULO)
Cabal C, González E, Torne Y, Rojas A. Micro-magnetic and molecular magnetic resonance imaging in modern biotechnology and pharmacy. Biotecnol Apl. 2009; 26:304-14.
Molecular and Cellular MR Imaging. Baltimore, MD: CRC Press. Johns Hopkins University School of Medicine; 2007.
Terreno E, Castelli DD, Viale A, Aime S. Challenges for molecular magnetic resonance imaging. Chem Rev. 2010;110: 3019-42.
Villaraza AJ, Bumb A, Brechbiel MW. Macromolecules, dendrimers, and nanomaterials in magnetic resonance imaging: the interplay between size, function, and pharmacokinetics. Chem Rev. 2010;110:2921-59.
Massoud TF, Gambhir SS. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev. 2003;17:545-80.
Gross S, Piwnica-Worms D. Molecular imaging strategies for drug discovery and development. Curr Opin Chem Biol. 2006; 10:334-42.
Glunde K, Artemov D, Penet MF, Jacobs MA, Bhujwalla ZM. Magnetic resonance spectroscopy in metabolic and molecular imaging and diagnosis of cancer. Chem Rev. 2010;110:3043-59.
Hoehn M, Himmelreich U, Kruttwig K, Wiedermann D. Molecular and cellular MR imaging: potentials and challenges for neurological applications. J Magn Reson Imaging. 2008;27:941-54.
El-Deiry WS, Sigman CC, Kelloff GJ. Imaging and oncologic drug development. J Clin Oncol. 2006;24:3261-73.
Weissleder R, Mahmood U. Molecular imaging. Radiology. 2001;219:316-33.
Cherry SR. In vivo molecular and genomic imaging: new challenges for imaging physics. Phys Med Biol. 2004;49:R13- R48.
Rudin M, Weissleder R. Molecular imaging in drug discovery and development. Nat Rev Drug Discov. 2003;2:123-31.
Pancholi K. A review of imaging methods for measuring drug release at nanometre scale: a case for drug delivery systems. Expert Opin Drug Deliv. 2012;9:203-18.
Rudin M. Noninvasive structural, functional, and molecular imaging in drug development. Curr Opin Chem Biol. 2009;13:360-71.
Achilefu S. Introduction to concepts and strategies for molecular imaging. Chem Rev. 2010;110:2575-8.
Hoffman JM, Gambhir SS, Kelloff GJ. Regulatory and reimbursement challenges for molecular imaging. Radiology. 2007;245:645-60.
Cai W, Rao J, Gambhir SS, Chen X. How molecular imaging is speeding up antiangiogenic drug development. Mol Cancer Ther. 2006;5:2624-33.
Glunde K, Pathak AP, Bhujwalla ZM. Molecular-functional imaging of cancer: to image and imagine. Trends Mol Med. 2007;13:287-97.
End of the interlude? [editorial]. Nat Biotechnol. 2004;22:1191.
Butcher EC, Berg EL, Kunkel EJ. Systems biology in drug discovery. Nat Biotechnol. 2004;22:1253-9.
Lammers T, Aime S, Hennink WE, Storm G, Kiessling F. Theranostic nanomedicine. Acc Chem Res. 2011;44:1029-38.
Ma X, Zhao Y, Liang XJ. Theranostic nanoparticles engineered for clinic and pharmaceutics. Acc Chem Res. 2011;44: 1114-22.
Caldorera-Moore ME, Liechty WB, Peppas NA. Responsive theranostic systems: integration of diagnostic imaging agents and responsive controlled release drug delivery carriers. Acc Chem Res. 2011; 44: 1061-70.
Wong DF, Tauscher J, Grunder G. The role of imaging in proof of concept for CNS drug discovery and development. Neuropsychopharmacology. 2009;34:187-203.
Kelloff GJ, Sigman CC. Cancer biomarkers: selecting the right drug for the right patient. Nat Rev Drug Discov. 2012; 11:201-14.
Blasberg R, Piwnica-Worms D. Imaging: strategies, controversies, and opportunities. Clin Cancer Res. 2012;18:631-7.
Kim JH, Park K, Nam HY, Lee S, Kim K, Kwon IC. Polymers for bioimaging. Polym Sci. 2007;32:1031-53.
Bellin MF. MR contrast agents, the old and the new. Eur J Radiol. 2006;60:314-23.
Yan GP, Robinson L, Hogg P. Magnetic resonance imaging contrast agents: Overview and perspectives. Radiography. 2007;13:e5-e19.
Sun C, Lee JS, Zhang M. Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev. 2008;60: 1252-65.
Westmeyer GG, Jasanoff A. Genetically controlled MRI contrast mechanisms and their prospects in systems neuroscience research. Magn Reson Imaging. 2007;25:1004-10.
Hylton N. Dynamic contrast-enhanced magnetic resonance imaging as an imaging biomarker. J Clin Oncol. 2006; 24:3293-8.
Winter PM. Magnetic resonance chemical exchange saturation transfer imaging and nanotechnology. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2012;4:389-98.
Caravan P, Zhang Z. Structure-relaxivity relationships among targeted MR contrast agents. Eur J Inorg Chem. 2012; 2012(12):1916-23.
Zong Y, Wang X, Goodrich KC, Mohs AM, Parker DL, Lu ZR. Contrastenhanced MRI with new biodegradable macromolecular Gd(III) complexes in tumor-bearing mice. Magn Reson Med. 2005;53:835-42.
Chan KW, Wong WT. Small molecular gadolinium(III) complexes as MRI contrast agents for diagnostic imaging. Coord Chem Rev. 2007;251:2428-51.
Meade TJ, Taylor AK, Bull SR. New magnetic resonance contrast agents as biochemical reporters. Curr Opin Neurobiol. 2003;13:1-6.
Jasanoff A. Functional MRI using molecular imaging agents. Trends Neurosci. 2005;28:120-6.
Caravan P. Protein-targeted gadolinium- based magnetic resonance imaging (MRI) contrast agents: design and mechanism of action. Acc Chem Res. 2009; 42:851-62.
Shahbazi-Gahrouei D, Roufeh M, Tavakoli MB. Gadolinium-Diethylenetriaminepenta- Acetic acid Conjugated with Monoclonal Antibody C595 as New Magnetic Resonance Imaging Contrast Agents for Breast Cancer (MCF-7) Detection. Iranian Biomed J. 2006;10:109-213.
Chen Z, Yu D, Liu C, Yang X, Zhang N, Ma C, et al. Gadolinium-conjugated PLA-PEG nanoparticles as liver targeted molecular MRI contrast agent. J Drug Target. 2011;19:657-65.
Mohs AM, Lu ZR. Gadolinium(III)- based blood-pool contrast agents for magnetic resonance imaging: status and clinical potential. Expert Opin Drug Deliv. 2007;4:149-64.
Mohs AM, Wang XH, Goodrich KC, Zong YD, Parker DL, Lu ZR. PEG-g-poly (GdDTPA-co-L-cystine): a biodegradable macromolecular blood pool contrast agent for MR imaging. Bioconjugate Chem. 2004;15:1424-30.
Lu ZR, Ye F, Vaidya A. Polymer platforms for drug delivery and biomedical imaging. J Control Release. 2007;122:269-77.
Lu ZR, Mohs AM, Zong Y, Feng Y. Polydisulfi de Gd(III) chelates as biodegradable macromolecular magnetic resonance imaging contrast agents. Int J Nanomed. 2006;1:31-40.
Lu ZR, Parker DL, Goodrich KC, Wang X, Dalle JG, Buswell HR. Extracellular biodegradable macromolecular gadolinium(III) complexes for MRI. Magn Reson Med. 2004;51:27-34.
Chen KJ, Wolahan SM, Wang H, Hsu CH, Chang HW, Durazo A, et al. A small MRI contrast agent library of gadolinium(III)-encapsulated supramolecular nanoparticles for improved relaxivity and sensitivity. Biomaterials. 2011; 32:2160-5.
Karfeld-Sulzer LS, Waters EA, Davis NE, Meade TJ, Barron AE. Multivalent protein polymer MRI contrast agents: controlling relaxivity via modulation of amino acid sequence. Biomacromolecules. 2010;11:1429-36.
Pan D, Caruthers SD, Senpan AF, Schmieder AH, Wickline SA, Lanza GM. Revisiting an old friend: manganese-based MRI contrast agents. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010;3.
Zhen Z, Xie J. Development of manganese- based nanoparticles as contrast probes for magnetic resonance imaging. Theranostics. 2012;2:45-54.
Tong S, Hou S, Zheng Z, Zhou J, Bao G. Coating optimization of superparamagnetic iron oxide nanoparticles for high T2 relaxivity. Nano Lett. 2010;10:4607-13.
Veiseh O, Gunn JW, Zhang M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev. 2010;62:284-304.
Colombo M, Carregal-Romero S, Casula MF, Gutierrez L, Morales MP, Bohm IB, et al. Biological applications of magnetic nanoparticles. Chem Soc Rev. 2012;41:4306-34.
Xie J, Jon S. Magnetic nanoparticlebased theranostics. Theranostics. 2012; 2:122-4.
Shao H, Min C, Issadore D, Liong M, Yoon TJ, Weissleder R, et al. Magnetic Nanoparticles and microNMR for Diagnostic Applications. Theranostics. 2012;2:55-65.
Shubayev VI, Pisanic TR, Jin S. Magnetic nanoparticles for theragnostics. Adv Drug Deliv Rev. 2009;61:467-77.
Rumenapp C, Gleich B, Haase A. Magnetic nanoparticles in magnetic resonance imaging and diagnostics. Pharm Res. 2012;29:1165-79.
Prow TW, Grice JE, Lin LL, Faye R, Butler M, Becker W, et al. Nanoparticles and microparticles for skin drug delivery. Adv Drug Deliv Rev. 2011;63:470-91.
Morawski AM, Winter PM, Crowder KC, Caruthers SD, Fuhrhop RW, Scott MJ, et al. Targeted nanoparticles for quantitative imaging of sparse molecular epitopes with MRI. Magn Reson Med. 2004;51:480-6.
Ruiz A, Hernandez Y, Cabal C, Gonzalez E, Veintemillas-Verdaguer S, Martinez E, et al. Biodistribution and pharmacokinetics of uniform magnetite nanoparticles chemically modified with polyethylene glycol. Nanoscale. 2013 Jun 10. doi: 10.1039/C3NR01412F.
Yoo D, Lee JH, Shin TH, Cheon J. Theranostic magnetic nanoparticles. Acc Chem Res. 2011;44:863-74.
Jokerst JV, Gambhir SS. Molecular imaging with theranostic nanoparticles. Acc Chem Res. 2011;44:1050-60.
Liu Z, Liang XJ. Nano-carbons as theranostics. Theranostics. 2012;2:235-7.
Chen Z, Ma L, Liu Y, Chen C. Applications of functionalized fullerenes in tumor theranostics. Theranostics. 2012; 2:238-50.
Nicolle GM, Toth E, Schmitt-Willich H, Raduchel B, Merbach AE. The impact of rigidity and water exchange on the relaxivity of a dendritic MRI contrast agent. Chemistry. 2002;8:1040-8.
Kaminskas LM, Porter CJ. Targeting the lymphatics using dendritic polymers (dendrimers). Adv Drug Deliv Rev. 2011; 63:890-900.
Bumb A, Brechbiel MW, Choyke P. Macromolecular and dendrimer-based magnetic resonance contrast agents. Acta Radiol. 2010;51:751-67.
Kobayashi H, Kawamoto S, Saga T, Sato N, Hiraga A, Ishimori T, et al. Positive effects of polyethylene glycol conjugation to generation-4 polyamidoamine dendrimers as macromolecular MR contrast agents. Magn Reson Med. 2001;46:781-8.
Cyran CC, Fu Y, Raatschen HJ, Rogut V, Chaopathomkul B, Shames DM, et al. New macromolecular polymeric MRI contrast agents for application in the differentiation of cancer from benign soft tissues. J Magn Reson Imaging. 2008;27:581-9.
Zhu D, Lu X, Hardy PA, Leggas M, Jay M. Nanotemplate-engineered nanoparticles containing gadolinium for magnetic resonance imaging of tumors. Invest Radiol. 2008; 43:129-40.
Nune SK, Gunda P, Majeti BK, Thallapally PK, Forrest ML. Advances in lymphatic imaging and drug delivery. Adv Drug Deliv Rev. 2011; 63:876-85.
Bawarski WE, Chidlowsky E, Bharali DJ, Mousa SA. Emerging nanopharmaceuticals. Nanomedicine. 2008;4:273-82.
Ulbrich W, Lamprecht A. Targeted drugdelivery approaches by nanoparticulate carriers in the therapy of infl ammatory diseases. J R Soc Interface. 2010;7 Suppl 1:S55-S66.
Venkataraman S, Hedrick JL, Ong ZY, Yang C, Ee PL, Hammond PT, et al. The effects of polymeric nanostructure shape on drug delivery. Adv Drug Deliv Rev. 2011;63:1228-46.
McCarthy JR. Multifunctional agents for concurrent imaging and therapy in cardiovascular disease. Adv Drug Deliv Rev. 2010;62: 1023-30.
Louie A. Multimodality imaging probes: design and challenges. Chem Rev. 2010;110: 3146-95.
Godin B, Tasciotti E, Liu X, Serda RE, Ferrari M. Multistage nanovectors: from concept to novel imaging contrast agents and therapeutics. Acc Chem Res. 2011;44:979-89.
Yu MK, Park J, Jon S. Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics. 2012; 2:3-44.
De M, Chou SS, Joshi HM, Dravid VP. Hybrid magnetic nanostructures (MNS) for magnetic resonance imaging applications. Adv Drug Deliv Rev. 2011;63:1282-99.
Kozlowska D, Foran P, MacMahon P, Shelly MJ, Eustace S, O’Kennedy R. Molecular and magnetic resonance imaging: The value of immunoliposomes. Adv Drug Deliv Rev. 2009; 61:1402-11.
Shi J, Xiao Z, Kamaly N, Farokhzad OC. Self-assembled targeted nanoparticles: evolution of technologies and bench to bedside translation. Acc Chem Res. 2011;44: 1123-34.
Al-Jamal WT, Kostarelos K. Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine. Acc Chem Res 2011; 44:1094-104.
Cormode DP, Jarzyna PA, Mulder WJ, Fayad ZA. Modifi ed natural nanoparticles as contrast agents for medical imaging. Adv Drug Deliv Rev. 2010;62:329-38.
Felber AE, Dufresne MH, Leroux JC. pHsensitive vesicles, polymeric micelles, and nanospheres prepared with polycarboxylates. Adv Drug Deliv Rev. 2012;64:979-92.
Nystrom AM, Wooley KL. The importance of chemistry in creating well-defi ned nanoscopic embedded therapeutics: devices capable of the dual functions of imaging and therapy. Acc Chem Res. 2011;44:969-78.
Ng KK, Lovell JF, Zheng G. Lipoproteininspired nanoparticles for cancer theranostics. Acc Chem Res. 2011;44:1105-13.
Johnson KM, Tao JZ, Kennan RP, Gore JC. Gadolinium-bearing red cells as blood pool MRI contrast agents. Magn Reson Med. 1998;40:133-42.
Wong FC, Kim EE. A review of molecular imaging studies reaching the clinical stage. Eur J Radiol. 2009;70:205-11.
Cheng Z, Tsourkas A. Paramagnetic porous polymersomes. Langmuir. 2008;24:8169-73.
Mody VV, Nounou MI, Bikram M. Novel nanomedicine-based MRI contrast agents for gynecological malignancies. Adv Drug Deliv Rev. 2009;61:795-807.
Weizenecker J, Gleich B, Rahmer J, Dahnke H, Borgert J. Three-dimensional real-time in vivo magnetic particle imaging. Phys Med Biol. 2009;54:L1-L10.
Weizenecker J, Borgert J, Gleich B. A simulation study on the resolution and sensitivity of magnetic particle imaging. Phys Med Biol. 2007;52:6363-74.
Udrea LE, Strachan NJ, Badescu V, Rotariu O. An in vitro study of magnetic particle targeting in small blood vessels. Phys Med Biol. 2006;51:4869-81.
Uhrich KE, Cannizzaro SM, Langer RS, Shakesheff KM. Polymeric systems for controlled drug release. Chem Rev. 1999;99: 3181-98.
Gupta P, Vermani K, Garg S. Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov Today. 2002;7:569-79.
Kim S, Kim JH, Kim D. pH sensitive swelling and releasing behavior of nano-gels based on polyaspartamide graft copolymers. J Colloid Interface Sci. 2011;356:100-6.
Ambrogio MW, Thomas CR, Zhao YL, Zink JI, Stoddart JF. Mechanized silica nanoparticles: a new frontier in theranostic nanomedicine. Acc Chem Res. 2011;44:903-13.
Koo H, Huh MS, Sun IC, Yuk SH, Choi K, Kim K, et al. In vivo targeted delivery of nanoparticles for theranosis. Acc Chem Res. 2011;44:1018-28.
Yu SS, Scherer RL, Ortega RA, Bell CS, O’Neil CP, Hubbell JA, et al. Enzymatic- and temperature-sensitive controlled release of ultrasmall superparamagnetic iron oxides (USPIOs). J Nanobiotechnol. 2011;9:7.
LaVan DA, McGuire T, Langer R. Small-scale systems for in vivo drug delivery. Nat Biotechnol. 2003;21:1184-91.
Staples M. Microchips and controlledrelease drug reservoirs. WIREs Nanomed Nanobiotechnol. 2012;2:400-17.
Sharma S, Nijdam AJ, Sinha PM, Walczak RJ, Liu X, Cheng MM, et al. Controlledrelease microchips. Expert Opin Drug Deliv. 2006;3:379-94.
Namiki Y, Fuchigami T, Tada N, Kawamura R, Matsunuma S, Kitamoto Y, et al. Nanomedicine for cancer: lipid-based nanostructures for drug delivery and monitoring. Acc Chem Res. 2011;44:1080-93.
Melancon MP, Zhou M, Li C. Cancer theranostics with near-infrared light-activatable multimodal nanoparticles. Acc Chem Res. 2011;44:947-56.
Puri A, Blumenthal R. Polymeric lipid assemblies as novel theranostic tools. Acc Chem Res. 2011;44:1071-9.
Bardhan R, Lal S, Joshi A, Halas NJ. Theranostic nanoshells: from probe design to imaging and treatment of cancer. Acc Chem Res. 2011;44:936-46.
Xia Y, Li W, Cobley CM, Chen J, Xia X, Zhang Q, et al. Gold nanocages: from synthesis to theranostic applications. Acc Chem Res. 2011;44:914-24.