2013, Número 6
<< Anterior Siguiente >>
Bol Med Hosp Infant Mex 2013; 70 (6)
Raquitismos hipofosfatémicos hereditarios
Velásquez-Jones L, Medeiros-Domingo M
Idioma: Español
Referencias bibliográficas: 57
Paginas: 421-431
Archivo PDF: 415.58 Kb.
RESUMEN
Los raquitismos hipofosfatémicos hereditarios (RHH) son un grupo de enfermedades caracterizadas por la pérdida renal de fosfatos, que ocasionan retardo del crecimiento, raquitismo y osteomalacia. La forma más común es el raquitismo hipofosfatémico ligado al cromosoma X, el cual es causado por mutaciones inactivantes en el gen
PHEX.
Las otras formas de los síndromes hipofosfatémicos hereditarios presentan menor prevalencia. Estas incluyen el raquitismo hipofosfatémico autosómico dominante, el raquitismo hipofosfatémico autosómico recesivo tipos 1 y 2 y el raquitismo hipofosfatémico hereditario con hipercalciuria.
En este artículo se revisan las bases genéticas de los diferentes tipos de RHH, las manifestaciones clínicas, las características bioquímicas en sangre y orina y los nuevos aspectos de su tratamiento.
REFERENCIAS (EN ESTE ARTÍCULO)
Velásquez JL. Alteraciones Hidroelectrolíticas en Pediatría. México: Editorial Prado; 2010. p. 328.
Santos F, Fuente R, Mejia N, Mantecon L, Gil-Peña H, Ordoñez FA. Hypophosphatemia and growth. Pediatr Nephrol 2013;28:595-603.
Bonnardeaux A, Bichet DG. Inherited disorders of the renal tubule. En: Taal MW, Chertow GM, Marsden PA, Skorecki K, Yu ASL, Brenner BM, eds. Brenner and Rector’s The Kidney. Philadelphia: Elsevier Saunders; 2012. pp. 1584-1625.
Tenenhouse HS, Econs MJ. Mendelian hypophosphatemia. En: Scriver CR, Beaudet AL, Sly WS, Valle D, eds. The Metabolic and Molecular Bases of Inherited Diseases. New York: McGraw-Hill; 2001. pp. 5039-5967.
Velásquez JL, Dorantes AL, Ajuria ML. Raquitismo hipofosfatémico resistente a la vitamina D. Bol Med Hosp Infant Mex 1984;41:561-568.
Gattineni J, Baum M. Genetic disorders of phosphate regulation. Pediatr Nephrol 2012;27:1477-1487.
Mächler M, Frey D, Gal A, Orth U, Wienker TF, Fanconi A, et al. X-linked dominant hypophosphatemia is closely linked to DNA markers DXS41 and DXS43 at Xp22. Hum Genet 1986;73:271-275.
The HYP Consortium. A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. Nat Genet 1995;11:130-136.
Durmaz E, Zou M, Al-Rijjal RA, Baitei EY, Hammami S, Bircan I, et al. Novel and de novo PHEX mutations in patients with hypophosphatemic rickets. Bone 2013;52:286-291.
Morey M, Castro-Feijoó L, Barreiro J, Cabanas P, Pombo M, Gil M, et al. Genetic diagnosis of X-linked dominant hypophosphatemic rickets in a cohort study: tubular reabsorption of phosphate and 1,25(OH)2D serum levels associated with PHEX mutation type. BMC Med Genet 2011;12:116.
Schiavi CS, Kumar R. The phosphatonin pathway: new insights in phosphate homeostasis. Kidney Int 2004;65:1-14.
Takeda E, Taketani Y, Sawada N, Sato T, Yamamoto H. The regulation and function of phosphate in the human body. Biofactors 2004;21:345-355.
Bonewald LF, Wacker MJ. FGF23 production by osteocytes. Pediatr Nephrol 2013;28:563-568.
Safirstein R. Vitamin D receptor in bone regulates osteoclastogenesis, FGF23 production, and phosphate homeostasis. Kidney Int 2007;71:289.
Forster IC, Hernando N, Biber J, Murer H. Proximal tubular handling of phosphate: a molecular perspective. Kidney Int 2006;70:1548-1559.
Carpenter TO, Imel EA, Holm IA, Jan de Beur SM, Insogna KL. A clinician’s guide to X-linked hypophosphatemia. J Bone Miner Res 2011;26:1381-1388.
Ariceta G, Langman CB. Growth in X-linked hypophosphatemic rickets. Eur J Pediatr 2007;166:303-309.
Liu S, Gupta A, Quarles LD. Emerging role of fibroblast growth factor 23 in a bone-kidney axis regulating systemic phosphate homeostasis and extracellular matrix mineralization. Curr Opin Nephrol Hypertens 2007;16:329-335.
Cho HY, Lee BH, Kang JH, Ha ILS, Cheong HI, Choi Y. A clinical and molecular genetic study of hypophosphatemic rickets in children. Pediatr Res 2005;58:329-333.
Roetzer KM, Varga F, Zwettler E, Nawrot-Wawrzyniak K, Haller J, Foster E, et al. Novel PHEX mutation associated with hypophosphatemic rickets. Nephron Physiol 2007;106:8-12.
Quarles LD. FGF23, PHEX, and MEPE regulation of phosphate homeostasis and skeletal mineralization. Am J Physiol Endocrinol Metab 2003;285:E1-E9.
Gattineni J, Baum M. Regulation of phosphate transport by fibroblast growth factor 23 (FGF23): implications for disorders of phosphate metabolism. Pediatr Nephrol 2010;25:591-601.
Schmitt CP, Mehls O. The enigma of hyperparathyroidism in hypophosphatemic rickets. Pediatr Nephrol 2004;19: 473-477.
Demay MB, Sabbagh Y, Carpenter TO. Calcium and vitamin D: what is known about the effects on growing bone. Pediatrics 2007;119:S141-S144.
Velásquez JL, Gordillo PG. Raquitismo dependiente de vitamina D tipo I: tratamiento con 1,25-dihidroxivitamina D. Bol Med Hosp Infant Mex 1984;41:36-40.
Pereira CM, de Andrade CR, Vargas PA, Coletta RD, de Almeida OP, Lopes MA. Dental alterations associated with X-linked hypophosphatemic rickets. J Endod 2004;30:241-245.
Mäkitie O, Kooh SW, Sochett E. Prolonged high-dose phosphate treatment: a risk factor for tertiary hyperparathyroidism in X-linked hypophosphatemic rickets. Clin Endocrinol (Oxf) 2003;58:163-168.
Vaisbich MH, Koch VH. Hypophosphatemic rickets: results of a long-term follow-up. Pediatr Nephrol 2006;21:230-234.
Velásquez JL. Raquitismo de origen renal. En: Meneghello RJ, ed. Diálogos en Pediatría. Santiago de Chile: Mediterráneo; 1995. pp. 225-230.
Mota HF, Velásquez JL. Trastornos Clínicos de Agua y Electrólitos. México: McGraw-Hill Interamericana; 2004. p. 143.
Quinlan C, Guegan K, Offiah A, O’Neill R, Hiorns MP, Ellard S, et al. Growth in PHEX-associated X-linked hypophosphatemic rickets: the importance of early treatment. Pediatr Nephrol 2012;27:581-588.
Alon US, Levy-Olomucki R, Moore WV, Stubbs J, Liu S, Quarles LD. Calcimimetics as an adjuvant treatment for familial hypophosphatemic rickets. Clin J Am Soc Nephrol 2008;3:658-664.
Cheung M, Roschger P, Klaushofer K, Veilleux LN, Roughley P, Glorieux FH, et al. Cortical and trabecular bone density in X-linked hypophosphatemic rickets. J Clin Endocrinol Metab 2013;98:E954-E961.
Bacchetta J, Salusky IB. Evaluation of hypophosphatemia: lessons from patients with genetic disorders. Am J Kidney Dis 2012;59:152-159.
Sun GE, Suer O, Carpenter TO, Tan CD, Li-Ng M. Heart failure in hypophosphatemic rickets: complications from high-dose phosphate therapy. Endocr Pract 2013;19:e8-e11.
McHenry CR, Mostafavi K, Murphy TA. Tertiary hyperparathyroidism attributable to long-term oral phosphate therapy. Endocr Pract 2006;12:294-298.
Savio RM, Gosnell JE, Posen S, Reeve TS, Delbridge LW. Parathyroidectomy for tertiary hyperparathyroidism associated with X-linked dominant hypophosphatemic rickets. Arch Surg 2004;139:218-222.
Mäkitie O, Doria A, Kooh SW, Cole WG, Daneman A, Sochett E. Early treatment improves growth and biochemical and radiographic outcome in X-linked hypophosphatemic rickets. J Clin Endocrinol Metab 2003;88:3591-3597.
Zivicnjak M, Schnabel D, Staude H, Even G, Marx M, Beetz R, et al; Hypophosphatemmic Rickets Study Group of the Arbeitsgemeinschaft für Pädiatrische Endokrinologie and Gesellschaft für Pädiatrische Nephrologie. Three-year growth hormone treatment in short children with X-linked hypophosphatemic rickets: effects on linear growth and body disproportion. J Clin Endocrinol Metab 2011;96:E2097-E2105.
Haffner D, Nissel R, Wühl E, Mehls O. Effects of growth hormone treatment on body proportions and final height among small children with X-linked hypophosphatemic rickets. Pediatrics 2004;113:e593-e596.
Zhang MY, Ranch D, Pereira RC, Armbrecht HJ, Portale AA, Perward F. Chronic inhibition of ERK1/2 signaling improves disordered bone and mineral metabolism in hypophosphatemic (Hyp) mice. Endocrinology 2012;153:1806-1816.
Wöhrle S, Henninger C, Bonny O, Thuery A, Beluch N, Hynes NE, et al. Pharmacological inhibition of fibroblast growth factor (FGF) receptor signaling ameliorates FGF23-mediated hypophosphatemic rickets. J Bone Miner Res 2013;28:899-911.
Baroncelli GI, Bertelloni S, Ceccarelli C, Saggese G. Effect of growth hormone treatment on final height, phosphate metabolism, and bone mineral density in children with X-linked hypophosphatemic rickets. J Pediatr 2001;138:236-243.
Imel EA, Hui SL, Econs MJ. FGF23 concentrations vary with the disease status in autosomal dominant hypophosphatemic rickets. J Bone Miner Res 2007;22:520-526.
Econs MJ, McEnery PT. Autosomal dominant hypophosphatemic rickets/osteomalacia: clinical characterization of a novel renal phosphate-wasting disorder. J Clin Endocrinol Metab 1997;82:674-681.
Kruse K, Woelfel D, Strom TM. Loss of renal phosphate wasting in a child with autosomal dominant hypophosphatemic rickets caused by a FGF23 mutation. Horm Res 2001;55:305-308.
Prié D, Friedlander G. Genetic disorders of renal phosphate transport. N Engl J Med 2010;362:2399-2409.
Tieder M, Modai D, Samuel R, Arie R, Halabe A, Bab I, et al. Hereditary hypophosphatemic rickets with hypercalciuria. N Engl J Med 1985;32:611-617.
Proesmans WC, Fabrey G, Marchal GJ, Gillis PL, Bouillon R. Autosomal dominant hypophosphataemia with elevated serum 1,25-dihydroxyvitamin D and hypercalciuria. Pediatr Nephol 1987;1:479-484.
Chen C, Carpenter T, Steg N, Baron R, Anast C. Hypercalciuric hypophosphatemic rickets, mineral balance, bone histomorphometry, and therapeutic implications of hypercalciuria. Pediatrics 1989;84:276-280.
Tieder M, Arie R, Bab I, Maor J, Liberman UA. A new kindred with hereditary hypophosphatemic rickets with hypercalciuria: implications for correct diagnosis and treatment. Nephron 1992;62:176-181.
Tieder M, Modai D, Shaked U, Samuel R, Arie R, Halabe A, et al. “Idiopathic” hypercalciuria and hereditary hypo phosphatemic rickets. Two phenotypical expressions of a common genetic defect. N Engl J Med 1987;316:125-129.
Areses-Trapote R, López-García JA, Ubetagoyena-Arrieta M, Eizaguirre A, Sáez-Villaverde R. Hereditary hypophospahtemic rickets with hypercalciuria: case report. Nefrologia 2012;32:529-534.
Bergwitz C, Roslin NM, Tieder M, Loredo-Osti JC, Bastepe M, Abu-Zahra A, et al. SCL34A3 mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria predict a key role for the sodium-phosphate cotransporter NaPi-IIc in maintaining phosphate homeostasis. Am J Hum Genet 2006;78:179-192.
Ichikawa S, Sorenson AH, Imel EA, Friedman NE, Gertner JM, Econs MJ. Intronic deletions in the SLC34A3 gene cause hereditary hypophosphatemic rickets with hypercalciuria. J Clin Endocinol Metab 2006;91:4022-4027.
Braithwaite V, Pettifor JM, Prentice A. Novel SLC34A3 mutation causing hereditary hypophosphataemic rickets with hypercalciuria in a Gambian family. Bone 2013;53:216-220.
Kremke B, Bergwitz C, Ahrens W, Schütt S, Schumacher M, Wagner V, et al. Hypophosphatemic rickets with hypercalciuria due to mutation of SLC34A3/NaPi-IIc can be masked by vitamin D deficiency and can be associated with renal calcifications. Exp Clin Endocrinol Diabetes 2009;117:49-56.