2013, Número 4
<< Anterior Siguiente >>
Rev Esp Med Quir 2013; 18 (4)
Mutación en el ADN mitocondrial y su relación con el cáncer de mama
Tenorio TJA
Idioma: Español
Referencias bibliográficas: 30
Paginas: 345-349
Archivo PDF: 314.47 Kb.
RESUMEN
El cáncer de mama ocupa el segundo lugar de todas las neoplasias
en el mundo (1.38 millones, 10.9%), solamente después
del cáncer de pulmón. De acuerdo con diversas publicaciones,
cada año se diagnostican mundialmente más de un millón de
casos y fallecen 548,000 mujeres. En México, la tasa de mortalidad
por cáncer de mama es de 14.9 defunciones por cada
100,000 mujeres de 25 años de edad. El 60% de las pacientes
que mueren tiene entre 30 y 59 años de edad. Se desconoce
su origen; sin embargo, se considera que es un padecimiento
multifactorial. Aunque se han detectado factores genéticos como
BRCA-1 y 2, y se ha notificado que de 15 a 20% de los casos
tiene antecedentes familiares, hasta la fecha no se han identificado
los genes responsables. El mayor porcentaje de casos son
esporádicos; es por ello que el estudio de variantes genéticas
que alteran la bioenergética celular y, por tanto, la biología molecular
del tumor, es de gran relevancia para el conocimiento
del cáncer de mama esporádico y el subsecuente desarrollo de
estrategias terapéuticas. Se han descrito diversas alteraciones
mitocondriales relacionadas con el cáncer de mama. El objetivo
de este trabajo es revisar estos factores.
REFERENCIAS (EN ESTE ARTÍCULO)
Ferlay J, Pisan P, Parkin DM. Cancer incidence, mortality and prevalence worldwide. IARC Cancer Base 2005, no. 5, version 2.0. Lyon: IARC Press.
Boyle P, Ferlay J. Cancer incidence and mortality in Europe, 2004. Ann Oncol 2005;16:481-488.
SSA México. Boletín de información estadística [en línea]. Consultado en http://sinais.salud.gob.mx/publicaciones. México: Secretaría de Salud, 2008.
SSA México. Información para la rendición de cuentas. Consultado en http://estadistica.inmujeres.gob.mx/formas/ tarjetas/Cancer_mama_y_cervix1.pdf. México: Secretaría de Salud, 2008.
Knaul FM, Nigenda G, Lozano R, Arreola-Ornelas H. Breast cancer in Mexico: an urgent priority. Salud Publica Mex 2009;51:s335-344.
Rodríguez-Cuevas S, Macías-Martínez CG, Labastida- Almendaro S. Breast cancer in Mexico. Is it a young women disease? Ginecol Obstet Mex 2000;68:185-190.
Rodríguez-Cuevas SA, Capurso-Garcia M. Epidemiology of breast cancer. Ginecol Obstet Mex 2006;74:585-593.
Pharoah PD, Antoniou AC, Easton DF, Ponder BA. Polygenes, risk prediction, and targeted prevention of breast cancer. N Engl J Med 2008;358:2796-2803.
Mincey BA. Genetics and the management of women at high risk for breast cancer. Oncologist 2003;8:466-473.
Katz ES, Dubois-Marshall AH, Sims P, Gautier H, et al. An in vitro model that recapitulates the epithelial to mesenchymal transition (EMT) in human breast cancer. PLoS One 2001;6:e17083.
Formentini LI, Martínez-Reyes I, Cuezva JM. The mitochondrial bioenergetic capacity of carcinomas. IUBMB Life 2010;62:554-560.
Warburg O. On the origin of cancer cells. Science 1956;123:309-314.
Barger JF, Plas DR. Balancing biosynthesis and bioenergetics: metabolic programs in oncogenesis. Endocr Relat Cancer 2010;17:R287-304.
Kelly DP, Scarpulla RC. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev 2004;18:357-368.
Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000;100:57-70.
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144:646-674.
Ralph SJ, Rodríguez-Enríquez S, Neuzil J, Moreno-Sánchez R. Bioenergetic pathways in tumor mitochondria as targets for cancer therapy and the importance of the ROS-induced apoptotic trigger. Mol Aspects Med 2010;31:29-59.
Wang XF, Witting PK, Salvatore BA, Neuzil J. Vitamin E analogs trigger apoptosis in HER2/erbB2-overexpressing breast cancer cells by signaling via the mitochondrial pathway. Biochem Biophys Res Commun 2005;326:282-289.
Willers IM, Cuezva JM. Post-transcriptional regulation of the mitochondrial H(+)-ATP synthase: A key regulator of the metabolic phenotype in cancer. Biochim Biophys Acta 2010, oct 27. [Epub ahead of print.]
Chen G, Wang F, Trachootham D, Huang P. Preferential killing of cancer cells with mitochondrial dysfunction by natural compounds. Mitochondrion 2010;10:614-625.
Osthus RC, Shim H, Kim S, Li Q, et al. Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J Biol Chem 2000;275:21797-21800.
Sanchez-Cenizo L, Formentini L, Aldea M, Ortega AD, et al. Up-regulation of the ATPase inhibitory factor 1 (IF1) of the mitochondrial H+-ATP synthase in human tumors mediates the metabolic shift of cancer cells to a Warburg phenotype. J Biol Chem 2010;285:25308-25313.
Kazuno AA, Munakata K, Nagai T, Shimozono S, et al. Identification of mitochondrial DNA polymorphisms that alter mitochondrial matrix pH and intracellular calcium dynamics. PLoS Genet 2006;2:e128.
Fridlyand LE, Philipson LH. Cold climate genes and the prevalence of type 2 diabetes mellitus. Med Hypotheses 2006;67:1034-1041.
Ingman M, Gyllensten U. Rate variation between mitochondrial domains and adaptive evolution in humans. Hum Mol Genet 2007;16:2281-2287.
Jiménez-Sánchez G, Silva-Zolezzi I, Hidalgo A, March S. Genomic medicine in Mexico: initial steps and the road ahead. Genome Res 2008;18:1191-1198.
Balloux F, Handley LJ, Jombart T, Liu H. Manica A. Climate shaped the worldwide distribution of human mitochondrial DNA sequence variation. Proc Biol Sci 2009;276:3447- 3455.
Plak K, Czarnecka AM, Krawczyk T, Golik P, Bartnik E. Breast cancer as a mitochondrial disorder (Review). Oncol Rep 2009;21:845-851.
Tan DJ, Bai RK Wong LJ. Comprehensive scanning of somatic mitochondrial DNA mutations in breast cancer. Cancer Res 2002;62:972-976.
Crisma M, Formaggio F, Moretto A, Toniolo C. Peptide helices based on alpha-amino acids. Biopolymers 2006;84:3-12.