2013, Número 6
<< Anterior Siguiente >>
Gac Med Mex 2013; 149 (6)
Diferenciación neuroendocrina en adenocarcinoma de próstata
Ramírez-Balderrama L, López-Briones S, Daza-Benítez L, Macías MH, López-Gaytán T, Pérez-Vázquez V
Idioma: Español
Referencias bibliográficas: 50
Paginas: 639-645
Archivo PDF: 222.60 Kb.
RESUMEN
La próstata es una glándula compuesta por diferentes tipos celulares y componentes extracelulares con funciones
definidas. El compartimento estromal incluye tejido nervioso, fibroblastos, linfocitos, macrófagos, células endoteliales (CE)
y músculo liso. El compartimento epitelial está compuesto de células epiteliales luminales, basales y neuroendocrinas,
escasas en número pero importantes en la regulación del crecimiento, diferenciación y función secretora. En el adenocarcinoma
prostático, las células neuroendocrinas se multiplican en los casos de alto grado y en estadios avanzados,
especialmente aquellos tratados hormonalmente que adquieren resistencia al tratamiento supresor hormonal. Los
receptores androgénicos intervienen en la génesis tumoral del adenocarcinoma prostático. El tratamiento supresor
hormonal inhibe los receptores androgénicos en el epitelio prostático. Las células neuroendocrinas carecen de estos
receptores, su crecimiento es independiente y el tratamiento supresor hormonal no elimina las células neoplásicas
neuroendocrinas, por el contrario proliferan después de la terapia y establecen una red paracrina estimulando la
proliferación de células neoplásicas independientes de andrógenos y conducen a recurrencia tumoral. En este trabajo
describimos la función de las células neuroendocrinas en tejido normal, así como en adenocarcinoma prostático,
incluyendo la estimulación de la proliferación neoplásica, invasión, resistencia a la apoptosis y angiogénesis, y describimos
algunas vías moleculares involucradas en la diferenciación neuroendocrina.
REFERENCIAS (EN ESTE ARTÍCULO)
Aumüller G. Morphologic and endocrine aspects of prostatic function. Prostate. 1983;4:195-214.
Bonkhoff H, Remberger K. Widespread distribution of nuclear androgen receptors in the basal cell layer of the normal and hyperplastic human prostate. Virchows Arch Pathol Anat Histopathol. 1993;422:35-8.
Sun Y, Niu J, Huang J. Neuroendocrine differentiation in prostate cancer. Am J Transl Res. 2009;1:148-62.
Bonkhoff H, Stein U, Remberger K. Endocrine-paracrine cell types in the prostate and prostatic adenocarcinoma are postmitotic cells. Hum Pathol. 1995;26:167-70.
Komiya A, Suzuki H, Imamoto T, et al. Neuroendocrine differentiation in the progression of prostate cancer. Int J Urol. 2009;16(1):37-44.
Huss WJ, Gray DR, Werdin ES, Funkhouser WK, Smith GJ. Evidence of pluripotent human prostate stem cells in a human prostate primary xenograft model. Prostate. 2004;160:77-90.
Aumüller G, Leonhardt M, Janssen M, Konrad L, Bjartell A, Abrahamsson PA. Neurogenic origin of human prostate endocrine cells. Urology. 1999; 53:1041-8.
Angelsen A, Syversen U, Haugen OA, Stridsberg M, Mjølnerød OK, Waldum HL. Neuroendocrine differentiation in carcinomas of the prostate: do neuroendocrine serum markers reflect immunohistochemical findings? Prostate. 1997;30:1-6.
Kamiya N, Akakura K, Suzuki H, et al. Pretreatment serum level of neuron specific enolase (NSE) as a prognostic factor in metastatic prostate cancer patients treated with endocrine therapy. Eur Urol. 2003;44:309-14.
Isshiki S, Akakura K, Komiya A, Suzuki H, Kamiya N, Ito H. Chromogranin a concentration as a serum marker to predict prognosis after endocrine therapy for prostate cancer. J Urol. 2002;167:512-5.
Sasaki T, Komiya A, Suzuki H, et al. Changes in chromogranin a serum levels during endocrine therapy in metastatic prostate cancer patients. Eur Urol. 2005;48:224-9.
Cussenot O, Villette JM, Cochand-Priollet B, Berthon P. Evaluation and clinical value of neuroendocrine differentiation in human prostatic tumors. Prostate Suppl. 1998;8:43-51.
Iwamura M, Koshiba K, Cockett AT. Receptors for BPH growth factors are located in some neuroendocrine cells. Prostate Suppl. 1998;8:14-7.
Dasilva JO, Amorino GP, Casarez EV, Pemberton B, Parsons SJ. Neuroendocrine- derived peptides promote prostate cancer cell survival through activation of IGF-1R signaling. Prostate. 2013;73(8):801-12.
Diaz M, Abdul M, Hoosein N. Modulation of neuroendocrine differentiation in prostate cancer by interleukin-1 and -2. Prostate Suppl. 1998;8: 32-6.
Spiotto MT, Chung TD. STAT3 mediates IL-6-induced neuroendocrine differentiation in prostate cancer cells. Prostate. 2000;42:186-95.
Bonkhoff H, Wernert N, Dhom G, Remberger K. Relation of endocrineparacrine cells to cell proliferation in normal, hyperplastic, and neoplastic human prostate. Prostate. 1991;19:91-8.
Sciarra A, Mariotti G, Gentile V, et al. Neuroendocrine differentiation in human prostate tissue: is it detectable and treatable? BJU Int. 2003;91: 438-45.
Tarján M. Prognostic significance of focal neuroendocrine differentiation in prostate cancer: cases with autopsy-verified cause of death. Indian J Urol. 2010;26:41-5.
Vashchenko N, Abrahamsson PA. Neuroendocrine differentiation in prostate cancer: implications for new treatment modalities. Eur Urol. 2005;47: 147-55.
Huang J, Yao JL, di Sant’Agnese PA, Yang Q, Bourne PA, Na Y. Immunohistochemical characterization of neuroendocrine cells in prostate cancer. Prostate. 2006;66:1399-406.
van Bokhoven A, Varella-Garcia M, Korch C, et al. Molecular characterization of human prostate carcinoma cell lines. Prostate. 2003;57:205-25.
Shah RB, Tadros Y, Brummell B, Zhou M. The diagnostic use of ERG in resolving an «atypical glands suspicious for cancer» diagnosis in prostate biopsies beyond that provided by basal cell and α-methylacyl-CoAracemase markers. Hum Pathol. 2013 May;44(5):786-94.
Xing N, Qian J, Bostwick D, Bergstralh E, Young CY. Neuroendocrine cells in human prostate over-express the anti-apoptosis protein survivin. Prostate. 2001;48:7-15.
Wang X, Kruithof-de Julio M, Economides KD, et al. A luminal epithelial stem cell that is a cell of origin for prostate cancer. Nature. 2009;461:495-500.
Cheville JC, Tindall D, Boelter C, et al. Metastatic prostate carcinoma to bone: clinical and pathologic features associated with cancer-specific survival. Cancer. 2012;95:1028-36.
Sacco E, Pinto F, Sasso F, et al. Paraneoplastic syndromes in patients with urological malignancies. Urol Int. 2009;83:1-11.
Bostwick DG, Dousa MK, Crawford BG, Wollan PC. Neuroendocrine differentiation in prostatic intraepithelial neoplasia and adenocarcinoma. Am J Surg Pathol. 1994;18:1240-6.
Puccetti L, Supuran CT, Fasolo PP, et al. Skewing towards neuroendocrine phenotype in high grade or high stage androgen-responsive primary prostate cancer. Eur Urol. 2005;48:215-21.
Taplin ME, George DJ, Halabi S, et al. Prognostic significance of plasma chromogranin a levels in patients with hormone-refractory prostate cancer treated in Cancer and Leukemia Group B 9480 study. Urology. 2005;66:386-91.
Angelsen A, Syversen U, Stridsberg M, Haugen OA, Mjølnerød OK, Waldum HL. Use of neuroendocrine serum markers in the follow-up of patients with cancer of the prostate. Prostate. 1997;31:110-7.
Lilleby W, Paus E, Skovlund E, Fosså SD. Prognostic value of neuroendocrine serum markers and PSA in irradiated patients with pN0 localized prostate cancer. Prostate. 2001;46:126-33.
Jin RJ, Wang Y, Masumori N, et al. NE-10 neuroendocrine cancer promotes the LNCaP xenograft growth in castrated mice. Cancer Res. 2004;64:5489-95.
Uchida K, Masumori N, Takahashi A, et al. Murine androgen-independent neuroendocrine carcinoma promotes metastasis of human prostate cancer cell line LNCaP. Prostate. 2006;66:536-45.
Xiao D, Qu X, Weber HC. GRP receptor-mediated immediate early gene expression and transcription factor Elk-1 activation in prostate cancer cells. Regul Pept. 2002;109:141-8.
Yang JC, Ok JH, Busby JE, Borowsky AD, Kung HJ, Evans CP. Aberrant activation of androgen receptor in a new neuropeptide-autocrine model of androgen-insensitive prostate cancer. Cancer Res. 2009;69:151-60.
Ishimaru H, Kageyama Y, Hayashi T, Nemoto T, Eishi Y, Kihara K. Expression of matrix metalloproteinase-9 and bombesin/gastrin-releasing peptide in human prostate cancers and their lymph node metastases. Acta Oncol. 2002;41:289-96.
Nagakawa O, Murakami K, Yamaura T, et al. Expression of membranetype 1 matrix metalloproteinase (MT1-MMP) on prostate cancer cell lines. Cancer Lett. 2000;155:173-9.
Vanoverberghe K, Vanden Abeele F, Mariot P, et al. Ca2+ homeostasis and apoptotic resistance of neuroendocrine-differentiated prostate cancer cells. Cell Death Differ. 2004;11:321-30.
Hansson J, Bjartell A, Gadaleanu V, Dizeyi N, Abrahamsson PA. Expression of somatostatin receptor subtypes 2 and 4 in human benign prostatic hyperplasia and prostatic cancer. Prostate. 2002;53:50-9.
Mazzucchelli R, Scarpelli M, Lopez-Beltran A, et al. Immunohistochemical expression and localization of somatostatin receptors in normal prostate, high grade prostatic intraepithelial neoplasia and prostate cancer and its many faces. J Biol Regul Homeost Agents. 2012;26:181-92.
Vainas G, Pasaitou V, Galaktidou G, et al. The role of somatostatin analogues in complete antiandrogen treatment in patients with prostatic carcinoma. J Exp Clin Cancer Res. 1997;16:119-26.
Koutsilieris M, Mitsiades C, Dimopoulos T, Ioannidis A, Ntounis A, Lambou T. A combination therapy of dexamethasone and somatostatin analog reintroduces objective clinical responses to LHRH analog in androgen ablation-refractory prostate cancer patients. J Clin Endocrinol Metab. 2001;86:5729-36.
Koutsilieris M, Mitsiades CS, Bogdanos J, et al. Combination of somatostatin analog, dexamethasone, and standard androgen ablation therapy in stage D3 prostate cancer patients with bone metastases. Clin Cancer Res. 2004;10:4398-405.
Verhelst J, De Longueville M, Ongena P, Denis L, Mahler C. Octreotide in advanced prostatic cancer relapsing under hormonal treatment. Acta Urol Belg. 1994;62:83-8.
Sun B, Halmos G, Schally AV, Wang X, Martinez M. Presence of receptors for bombesin/gastrin-releasing peptide and mRNA for three receptor subtypes in human prostate cancers. Prostate. 2000;42:295-303.
Hansson J, Abrahamsson PA. Neuroendocrine differentiation in prostatic carcinoma. Scand J Urol Nephrol Suppl. 2003;212:28-36.
Levine L, Lucci JA, Pazdrak B, et al. Bombesin stimulates nuclear factor kappa B activation and expression of proangiogenic factors in prostate cancer cells. Cancer Res. 2003;63:3495-502.
Dizeyi N, Bjartell A, Hedlund P, Taskén KA, Gadaleanu V, Abrahamsson PA. Expression of serotonin receptors 2B and 4 in human prostate cancer tissue and effects of their antagonists on prostate cancer cell lines. Eur Urol. 2005;47:895-900.
Wu L, Birle DC, Tannock IF. Effects of the mammalian target of rapamycin inhibitor CCI-779 used alone or with chemotherapy on human prostate cancer cells and xenografts. Cancer Res. 2005;65:2825-31.