2013, Número 4
<< Anterior Siguiente >>
Acta Med 2013; 11 (4)
Síndrome de Apert
Reséndiz MIA, Nava UE
Idioma: Español
Referencias bibliográficas: 54
Paginas: 173-179
Archivo PDF: 260.43 Kb.
RESUMEN
El síndrome de Apert (SA), también llamado acrocefalosindactilia tipo 1, se caracteriza por el cierre precoz de las suturas craneales (craneosinostosis), sindactilia simétrica de pies y manos y alteraciones de la línea media facial; se puede presentar coeficiente intelectual bajo o normal. Se llega a reportar su frecuencia de aparición tan alta como 1 en 2,100 nacimientos hasta 1 en 160,000 nacidos vivos. La craneosinostosis frontolamboidea es la más comúnmente encontrada en los pacientes con síndrome de Apert, lo que produce un acortamiento asimétrico anteroposterior del cráneo y limita el crecimiento y desarrollo cerebral. Es aceptado que el origen del síndrome de Apert es una mutación puntual esporádica en la gran mayoría de los casos, que produce una ganancia en la función del receptor 2 del factor de crecimiento de los fibroblastos (FGFR2, por sus siglas en inglés). La mutación del receptor 2 del FGF en el síndrome de Apert induce la activación de múltiples vías de señalización que contribuyen a la función anómala de los osteoblastos. Por el momento, el tratamiento disponible es fundamentalmente quirúrgico paliativo, y consta, básicamente, en separar las sinostosis presentes en el cráneo y las sindactilias en los miembros pélvicos y torácicos.
REFERENCIAS (EN ESTE ARTÍCULO)
Premalata K et al. Apert síndrome. Journal of Indian Society of Pedodontics and Preventive Dentistry. 2010; 28: 322-325.
Ciasca S, Araujo A, De Paula Simão A, Capellini S, Chiaratti P, Camargo E, De Oliveira A, Sá E. Neuropsychological and Phonological Evaluation in the Apert’s Syndrome. Arq Neuropsiquiatr. 2001; 59: 342-346.
Jong T, Maliepaard M, Bannink N, Raat H, Mathijssen I. Health-related problems and quality of life in patients with syndromic and complex craniosynostosis. Childs Nerv Syst. 2012; 28: 879-882.
Hurst JA, Jenkins D, Vasudevan PC, Kirchhoff M, Skovby F, Rieubland C et al. Metopic and sagittal synostosis in Greig cephalopolysyndactyly syndrome: five cases with intragenic mutations or complete deletions of GLI3. Eur J Hum Genet. 2011; 19: 757-762.
Verma Sh, Draznin M. Apert syndrome. Dermatology Online Journal. 2011; 1: 15.
Yaghoobi R, Bagherani N, Tajalli M, Paziar N. Apert syndrome. Indian J Dermatol Venereol Leprol. 2010; 76: 724.
Campanati A, Marconi B, Penna L, Paolinelli M, Offidani A. Pronounced and early acne in Apert’s syndrome: a case successfully treated with oral isotretinoin. Eur J Dermatol. 2002; 12: 496-498.
Ibrahimi O, Eliseenkova A, Plotnikov A, Yu K, Ornitz D, Mohammadi M. Structural basis for fibroblast growth factor receptor 2 activation in Apert syndrome. PNAS, 2001; 98: 7182-7187.
Fanganiello R, Sertié A, Reis E, YehE, Oliveira N, Bueno D et al. Apert p.Ser252Trp mutation in FGFR2 alters osteogenic potential and gene expression of cranial periosteal cells. Mol Med. 2007; 13: 422-442.
Carneiro G, Farias J, Santos F, Lamberti P. Apert syndrome: Review and report a case. Rev Bras Otorrinolaringol. 2008; 74: 640.
Kan Sh, Elanko N, Johnson D, Cornejo-Roldan L, Cook J, Reich E et al. Genomic screening of fibroblast growth-factor receptor 2 reveals a wide spectrum of mutations in patients with syndromic craniosynostosis. Am J Hum Genet. 2002; 70: 472-486.
Rajenderkumar D, Bamiou D, Sirimanna T. Audiological profile in Apert syndrome. Arch Dis Child. 2005; 90: 592-593.
Şoancă A, Dudea D, Gocan H, Roman A, Culic B. Oral manifestations in Apert syndrome: case presentation and a brief review of the literature. Rom J Morphol Embryol. 2010; 51: 581-584.
Aziza A, Kandasamy R, Shazia S. Pattern of craniofacial anomalies seen in a tertiary care hospital in Saudi Arabia. Ann Saudi Med. 2011; 31: 488-493.
Tiwari A, Agrawal A, Pratap A, Lakshmi R, Narad R. Apert syndrome with septum pellucidum agenesis. Singapore Med J. 2007; 48: 62.
Hohoff A, Joos U, Meyer U, Ehmer U, Stamm T. The spectrum of Apert syndrome: phenotype, particularities in orthodontic treatment, and characteristics of orthognathic surgery. Head & Face Medicine. 2007; 3: 10.
Múfalo P, Kaizer R, Dalben G, Almeida A. Comparison of Periodontal Parameters in Individuals with Syndromic Craniosynostosis. J Appl Oral Sci. 2009; 17: 13-20.
Basar H, Buyukkocak U, Kaymak C, Akpinar S, Sert O, Vargel I. An intraoperative unexpected respiratory problem in a patient with Apert syndrome. Minerva Anestesiol. 2007; 73: 603-606.
Fowler C, D’Silva N. Clinical-Pathological Conference: Case 5. Head and Neck Pathol. 2010; 4: 234-237.
Yacubian-Fernandes A, Palhares A, Giglio A, Gabarra R, Zanini S, Portela L et al. Apert syndrome. Factors involved in the cognitive development. Arq Neuropsiquiatr. 2005; 63: 963-968.
Jong T, Rijken B, Lequin M, Van Veelen M, Mathijssen M. Brain and ventricular volume in patients with syndromic and complex craniosynostosis. Childs Nerv Syst. 2012; 28: 137-140.
Wyrobe A, Eskenazi B, Young S, Arnheim N, Tiemann-Boege I, Jabs E et al. Advancing age has differential effects on DNA damage, chromatin integrity, gene mutations and aneuploidies in sperm. PNAS. 2006; 103: 9601-9606.
Goriely A, Wilkie AO. Paternal age effect mutations and selfish spermatogonial selection: causes and consequences for human disease. Am J Hum Genet. 2012; 90: 175-200.
Glaser R, Broman K, Schulman R, Eskenazi B,Wyrobek A, Jabs E. The paternal-age effect in Apert syndrome is due, in part, to the increased frequency of mutations in sperm. Am J Hum Genet. 2003; 73: 939-947.
Yoon S, Qin J, Glaser R, Jabs E, Wexler N, Sokol R, Arnheim N, Calabrese P. The ups and downs of mutation frequencies during aging can account for the Apert syndrome paternal age effect. PLoS Genetics. 2009; 5: 1-9.
Goriely A, McVean G, van Pelt A, O’Rourke A, Wall S, Rooij D, Wilkie A. Gain-of-function amino acid substitutions drive positive selection of FGFR2 mutations in human spermatogonia. PNAS. 2005; 102: 6051-6056.
Crow J. Age and sex effects on human mutation rates: an old problem with new complexities. J Radiat Res. 2006; 47: 75-82.
Qin J, Calabrese P, Tiemann-Boege I, Shinde D, Yoon S, Gelfand D et al. The molecular anatomy of spontaneous germline mutations in human testes. PLoS Biology. 2007; 5: 1912-1922.
Coussens A, Wilkinson C, Hughes I, Morris C, van Daal A, Anderson P et al. Unravelling the molecular control of calvarial suture fusion in children with craniosynostosis. BMC Genomics. 2007; 8: 458-483.
Lemonnier J, Haÿ E, Delannoy P, Fromigué O, Lomri A, Modrowski D, Marie PJ. Increased osteoblast apoptosis in apert craniosynostosis: role of protein kinase C and interleukin-1. Am J Pathol. 2001; 158: 1833-42.
Wheldon L, Khodabukus N, Patey S, Smith T, Heath J, Hajihosseini M. Identification and characterization of an inhibitory fibroblast growth factor receptor 2 (FGFR2) molecules, up-regulated in an Apert syndrome mouse model. Biochem J. 2011; 436: 71-81.
Pollock P, Gartside M, Dejeza L, Powell M, Mallon M, Davies H et al. Frequent activating FGFR2 mutations in endometrial carcinomas parallel germline mutations associated with craniosynostosis and skeletal dysplasia syndromes. Oncogene. 2007; 26: 7158-7162.
Melnik BC, Schmitz G, Zouboulis CC. Anti-acne agents attenuate FGFR2 signal transduction in acne. J Invest Dermatol. 2009; 129: 1868-77.
Wang Y, Xiao R, Yang F, Karim B, Iacovelli A, Cai J, Lerner Ch, Richtsmeier J, Leszl J, Hill Ch, Yu K, Ornitz D, Elisseeff J, Huso D, Jabs E. Abnormalities in cartilage and bone development in the Apert síndrome FGFR2+/S252W mouse. Development. 2005; 132: 3537-3548.
Miraoui H, Oudina K, Petite H, Tanimoto Y, Moriyama K, Marie P. Fibroblast growth factor receptor 2 promotes osteogenic differentiation in mesenchymal cells via ERK1/2 and protein kinase C signaling. J Biol Chem. 2009; 284: 4897-904.
Ibrahimi OA, Zhang F, Eliseenkova AV, Itoh N, Linhardt RJ, Mohammadi M. Biochemical analysis of pathogenic ligand dependent FGFR2 mutations suggests distinct pathophysiological mechanisms for craniofacial and limb abnormalities. Hum Mol Genet. 2004; 13: 2313-24.
Fenwick A, Bowdin S, Klatt R, Wilkie A. A deletion of FGFR2 creating a chimeric IIIb/IIIc exon in a child with Apert syndrome. BMC Medical Genetics. 2011; 12: 122-126.
Yu K, Ornitz D. Uncoupling fibroblast growth factor receptor 2 ligand binding specificity leads to Apert syndrome-like phenotypes. PNAS. 2001; 98: 3641-3643.
Bochukova E, Soneji Sh, Wall S, Wilkie A. Scalp fibroblasts have a shared expression profile in monogenic craniosynostosis. J Med Genet. 2010; 47: 803-808.
Tanimoto Y, Yokozeki M, Hiura K, Matsumoto K, Nakanishi H, Matsumoto T, Marie P, Moriyama K. A soluble form of fibroblast growth factor receptor 2 (FGFR2) with S252W mutation acts as an efficient inhibitor for the enhanced osteoblastic differentiation caused by FGFR2 activation in Apert syndrome. J Biol Chem. 2004; 279: 45926-45934.
McDowell L, Frazier B, Studelska D, Giljum K, Chen J, Liu J, Yu K, Ornitz D, Zhang L. Inhibition or activation of Apert syndrome FGFR2 (S252W) signaling by specific glycosaminoglycans. J Biol Chem. 2006; 281: 6924-6930.
Miraoui H, Ringe J, Häupl T, Marie P. Increased EFG- and PDGFa-receptor signaling by mutant FGF-receptor 2 contributes to osteoblast dysfunction in Apert craniosynostosis. Hum Mol Genet. 2010; 19: 1678-1689.
Kaabeche K, Guenou H, Bouvard D, Didelot N, Listrat A, Marie P. Cbl-mediated ubiquitination of α5 integrin subunit mediates fibronectin-dependent osteoblast detachment and apoptosis induced by FGFR2 activation. Journal of Cell Science. 2005; 118: 1223-1232.
Ferreira J, Carter S, Bernstein P, Jabs E, Glickstein J, Marion R, Baergen R, Gross S. Second trimester molecular prenatal diagnosis of sporadic Apert syndrome following suspicious ultrasound findings. Ultrasound Obstet Gynecol. 1999; 14: 426-430.
Stenirri S, Restagno G, Battista G, Alaimo G, Sbaiz L, Mari C, Genitori L, Maurizio F, Cremonesi L. Integrated strategy for fast and automated molecular characterization of genes involved in craniosynostosis. Clinical Chemistry. 2007; 53: 1767-1774.
Faro C, Chaoui R, Wegrzyn P, Levaillant JM, Benoit B, Nicolaides KH. Metopic suture in fetuses with Apert syndrome at 22–27 weeks of gestation. Ultrasound Obstet Gynecol. 2006; 27: 28-33.
Esparza J, Hinojosa J, García-Recuero I, Romance A, Pascual B, Martínez de Aragón A. Surgical treatment of isolated and syndromic craniosynostosis. Results and complications in 283 consecutive cases. Neurocirugía. 2008; 19: 509-529.
Paradisi A, Ghitti F, Capizzi R, Fossati B, Aamerio P, Guerriero C. Acne treatment with isotretinoin in a patient with Apert syndrome. EJD. 2011; 21: 611-612.
Shen K, Krakora S, Cunningham M, Singh M, Wang X, Hu F, and Post J, Ehrlich G. Medical treatment of craniosynostosis: Recombinant Noggin inhibits coronal suture closure in the rat craniosynostosis model. Orthod Craniofac Res. 2009; 12: 254-262.
Chandramore K, Ghaskadbi S. Evo-devo: Hydra raises its Noggin. J Biosci. 2011; 36: 517-529.
Hopkins D, Keles S, Greenspan D. The bone morphogenetic protein 1/tolloid-like metalloproteinases. Matrix Biol. 2007; 26: 508-523.
Pregizer S, Mortlock D. Control of BMP gene expression by long-range regulatory elements. Cytokine Growth Factor Rev. 2009; 20: 509-515.
Karunakaran D, Kockx M, Owen D, Burnett J, Jessup W, Kritharides L. Protein kinase C controls vesicular transport and secretion of apolipoprotein E from primary human macrophages. JBC. 2013; 1: 1-24.
Rocha A, Mans D, Regner A, Schwartsmann G. Targeting protein kinase C: New therapeutic opportunities against high-grade malignant gliomas? The Oncologist. 2002; 7:17-33.