2013, Número 3
<< Anterior Siguiente >>
Rev Mex Neuroci 2013; 14 (3)
Efectos electrofisiológicos e histopatológicos de dosis bajas de radiación ionizante en la médula espinal de ratas
Serrano-Money FE, López-Alburquerque JT, Yajeya-Pérez J, Mangas-Martín A
Idioma: Español
Referencias bibliográficas: 40
Paginas: 111-118
Archivo PDF: 302.58 Kb.
RESUMEN
Introducción La mielopatía post-irradiación es una consecuencia grave de la radioterapia.
Objetivo: Caracterizar los efectos de bajas dosis de radiación sobre la conducción nerviosa y evaluar las alteraciones histopatológicas
en la región lumbosacra de la médula espinal de ratas de cuatro meses de edad.
Métodos: Se irradió la región lumbosacra de 19 ratas Wistar de cuatro meses de edad con una dosis única de 22 Gy. Las posibles
lesiones fueron evaluadas tras la irradiación por métodos neurofisiológicos y a los 12 meses por métodos neurofisiológicos e
histopatológicos.
Resultados:No se detectaron signos denervativos ni alteraciones en la conducción nerviosa periférica y/o central. Los estudios
histopatológicos no detectaron pérdida de neuronas en astas anteriores ni desmielinización en las vías largas de la médula. El posible
daño producido post-irradiación se puede monitorizar mediante técnicas neurofisiológicas atraumáticas como los potenciales evocados
somatosensoriales.
Conclusiones: Las dosis bajas de irradiación no son lesivas para la médula espinal ni para las raíces dorso-lumbares.
REFERENCIAS (EN ESTE ARTÍCULO)
Okada S, Okeda R. Pathology of radiation myelopathy. Neuropathology 2001; 21: 247-65.
Schultheiss TE, Stephens LC. Invited review: Permanent radiation myelopathy. Br J Radiol 1992; 65: 737-53.
Grünewald RA, Chroni E, Panayotopoulos CP. Late onset radiation induced motor neuron syndrome. J Neurol Neurosurg Psychiatry 1992; 55: 741-2.
van der Sluis RW, Wolfe GI, Nations SP, Bryan WW, Krampitz DE, Kissel JT, Barohn RJ. Post-radiation lower motor neuron syndrome. J Clin Neuromusc Dis 2000; 2: 10-17.
Bauduceau O, Souleau B, Le-Moulec S, Houlgatte A, Bernard O. Radiotérapie des séminomes testiculaires de stade I étude rétrospective et revue de la littérature. Cancer/Radiothérapie 2003; 7: 386-94.
Brydøy M, Storsteinc A, Dahlb O. Transient neurological adverse effects following low dose radiation therapy for early stage testicular seminoma. Radiotherapy and Oncology 2007; 82: 137-44.
Mathis S, Dumas P, Neau JP, Gil R. La neuropathie motrice pure, une complication rare de la radiothérapie: trois observations et une revue de la littérature. Rev Méd Interne 2007; 28: 377-87.
Knap M, Bentzen S, Overgaard J. Late neurological complications after irradiation of malignant tumors of the testis. Acta Oncologica 2007; 46: 497-503.
Schultheiss TE, Higgins EM, El-Mahidi AM. The latent period in clinical radiation myelopathy. Int J Radiat Oncol Biol Phys 1984; 10: 1109-15.
Palmer J. Radiation myelopathy. Brain 1972; 95: 109-22.
Ruifrok AC, Stephens LC, van der Kogel AJ. Radiation response of the rat cervical spinal cord after irradiation at different ages: Tolerance, latency and pathology. Int J Radiat Oncol Biol Phys 1994; 29: 73-9.
Dorfman L, Donaldson S, Gupta P, Bosley T. Electrophysiological evidence of subclinical injury to the posterior columns of the human spinal cord after therapeutic radiation. Cancer 1982; 50: 2815-19.
Snooks SJ, Swash M. Motor conduction velocity in the human spinal cord: slowed conduction in multiple sclerosis and radiation myelopathy. J Neurol Neurosurg Psychiatry 1985; 48: 1135-9.
de Scisciolo G, Bartelli M, Magrini S, Biti GP, Guidi L, Pinto F. Longterm nervous system damage from radiation of the spinal cord: an electrophysiological study. J Neurol 1990; 238: 9-15.
Atkinson S, Li, Yu-Qing, Wong S. Changes in oligodendrocytes and myelin gene expression after radiation in the rodent spinal cord. Int J Radiation Oncology Biol Phys 2003; 57: 1093-1100.
van Luijk P, Bijl HP ,†Konings AWT, van der Kogel AJ, Schippers JM. Data on dose–volume effects in the rat spinal cord do not support existing NTCP models. Int J Radiation Ocology, Biol Phys 2005; 61: 892-900.
Kirpatrick JP, van der Kogel AJ, Schultheiss TE. Radiation dosevolume effects in the spinal cord. Int J Radiat Oncol Biol Phys 2010; 76: Supplement S42-S49.
Geraci JP, Mariano MS. Relationship between dose and the latent period for radiation myelopathy in rats. Radiat Res 1994; 140: 340-46.
Phillipens M, Pop LAM, Visser, AMW, Schellekens S, van der Kogel AJ. Dose-volume effects in rat thoracolumbar spinal cord: an evaluation of NTCP models. Int J Radiat Oncol Biol Phys 2004; 60: 578-90.
Bradley WG, Fewings JD, Cumming WJK, Harrison RM, Faulds AJ. Delayed myeloradiculopathy produced by spinal X-radiation in the rat. J Neurol Sci 1977; 31: 63-82.
Phillipens MEP, Pop LAM, Visser AG, van der Kogel AJ Dose-volume effects in rat thoracolumbar spinal cord: The effects on non-uniform dose distribution. Int J Radiation Oncol Biol Phys 2007; 1: 204-13.
Bijl HP, van Luijk P, Coppes R, Schippers J, Konings A, van der Kogel AJ. Regional differences in radiosensitivity across the rat cervical spinal cord. Int J Radiation Oncology Biol Phys 2005; 61: 543-51.
Yu-Qing Li, Shun Wong C. Radiation-induced apoptosis in the neonatal and adult rat spinal cord. Radiation Research 2000; 154: 268-76.
Hopewell W, Morris AD, Dixon-Brown A. The influence of field size on the late tolerance of the rat spinal cord to single doses of X rays. Brit J Radiol1987; 60: 1099-108.
Schultheiss TE, Stephens LC, Kian-Ang K, Price RE, Peters LJ. Volume effect in rhesus monkey spinal cord. Int J Radiat Oncol Biol Phys 1994; 29: 67-72.
Lo YC, McBride W, Withers HR. The effect of single doses of radiation on mouse spinal cord. Int J Radiat Oncol Biol Phys 1992; 22: 57-63.
Lecky BRF, Murray NMF, Berry RJ. Transient radiation myelopathy: spinal somatosensory evoked responses following incidental cord exposure during radiotherapy. J Neurol Neurosurg Psychiatry 1980; 43: 747-50.
López-Alburquerque T. Potenciales evocados somatosensoriales. En: Gutiérrez-Rivas E, Jiménez MD, Pardo J, Romero M (eds.). Manual de electromiografía clínica. 2a. Ed. Ergon Ed; 2008, p. 179-89.
Fehlings M, Tator C, Linden D, Piper I. Motor and somatosensory evoked potentials recorded from the rat. Electroenceph Clin Neurophysiol 1988; 69: 65-78.
Greene EC. Anatomy of the rat. New York, N.Y: Hafner eds.; 1968.
Mangas A, Coveñas R, Bodet D, Geffard M, Aguilar A, Yajeya J. Immunocytochemical visualization of D-Glutamate in the rat brain. Neuroscience 2007; 144: 654-64.
Mangas A, Coveñas R, Bodet D, Duleu S, Marcos P, Geffard M. Vitamins in the monkey brain: an immunocytochemical study. J Chem Neuroanat 2009; 38: 1-8.
Coveñas R, Mangas A, Bodet D, Duleu S, Marcos P, Geffard M. Vitamin C in the monkey brain. En: CM Jackson eds. Vitamin C: Nutrition, Side Effects and Supplements. Hauppauge, NY: Nova Publishers 2011.
Paxinos G, Watson C. The rat brain in stereotaxic coordinates. Sydney, Australia: Academic Press, 1982.
Castilla-Serna L, Cravioto-Muñoz J. Estadística simplificada para la investigación en ciencias de la salud. 1a. Ed. México, D.F.: Ed. Trillas; 1991.
van der Kogel AJ. The nervous system: Radiobiology and experimental pathology. In: Scherer E, Streffer Ch, Trott KR (eds.). Medical Radiology. Radiopathology of Organs and Tissues. Berlin, Heidelberg: Springer-Verlag; 1991, p. 191-212.
Fehlings M, Tator C, Linden D, Piper I. Motor and somatosensory evoked potentials recorded from the rat. Electroenceph Clin Neurophysiol 1988; 69: 65-78.
Oguzhanoglu A, Kurt T. Findings of somatosensory evoked potentials to stimulation of the ciatic nerve in two different rat strains. Exp Anim 2001; 50: 361-4.
Hurlbert J, Koyanagi I, Tator C. Sensory evoked potentials for selective monitoring of the rat spinal cord: a cerebellar evoked potential to assess ventral cord integrity. J Neurotrauma 1993; 10: 181-200.
Mastaglia FL, McDonald WI, Watson JV, Yogendran K. Effect of X-radiation on the spinal cord: An experimental study of the morphological changes in central nerve fibers. Brain 1976; 99: 101-22.