2013, Número 4
<< Anterior Siguiente >>
Revista Cubana de Información en Ciencias de la Salud (ACIMED) 2013; 24 (4)
Búsqueda en bases de datos de actividad biológica de moléculas quinoides
Durán LM, Gaitán IR, Olivero VJT
Idioma: Español
Referencias bibliográficas: 65
Paginas: 416-430
Archivo PDF: 247.72 Kb.
RESUMEN
Introducción: las quinonas son moléculas biológicas ampliamente distribuidas en la naturaleza. Recientemente el grupo de investigación de productos naturales, de la Universidad de Cartagena; obtuvo por extracción de plantas del género tabebuia y por síntesis química un número importante de estos compuestos. Sin embargo, con el fin de seguir profundizando en los estudios de sus actividades y su relación con el tipo de estructura lineal o angular se realizó una revisión en varias bases de datos.
Objetivo: buscar información que permitiera conocer si los compuestos obtenidos se encontraban reportados; así como también la actividad biológica y los bioensayos realizados a estas moléculas
in vivo,
in vitro e
in silico.
Métodos: esta investigación fue desarrollada con el uso de un diseño que aplicó la edición de moléculas, mediante la interfaz gráfica de servidores (PUBCHEM CHEMIDPLUS ADVANCE, CHEBI) y una búsqueda de datos complementarios en la base de datos PUBMED. Los datos de la actividad biológica más relevantes fueron relacionados con la estructura química de los compuestos sintetizados y de los análogos suministrados por PUBMED.
Resultados: de los compuestos hallados en las bases de datos, 24 presentaron código en la base de datos PUBCHEM, 12 mostraron reportes de actividad biológica en las bases de datos, y se encontró que el mayor número de bioensayos fue reportado con furanonaftoquinonas, seguido por naftoquinonas.
Conclusiones: la actividad citotóxica y anticancerígena en diferentes líneas celulares, representa el mayor número de bioensayos realizados a estos compuestos.
REFERENCIAS (EN ESTE ARTÍCULO)
Bernardo PH, Chai CL, Le Guen M, Smith GD, Waring P. Structure-activity delineation of quinones related to the biologically active Calothrixin B. Bioorg Med Chem Lett. 2007;17(1):82-5.
Gaitán Ibarra RAE, Álvarez W, Jaraba-Salgado Z. Obtención de análogos de productos naturales furanonaftoquinónicos y evaluación de su actividad antimalárica frente a Plasmodium falciparum. Scientia et Technica. 2007;33:141-4.
Repetto G, Repetto M. Métodos alternativos: estudios toxicológicos in vitro. Toxicología especial. Díaz de Santos; 1995:37-59.
Kumar N, Hendriks BS, Janes KA, de Graaf D, Lauffenburger DA. Applying computational modeling to drug discovery and development. Drug discovery today. 2006;11(17):806-11.
Frazier JM. In vitro toxicity testing: applications to safety evaluation: Inform Health Care; 1992.
Canales M, Hernández T, Serrano R, Hernández LB, Durán A, Ríos V, et al. Antimicrobial and general toxicity activities of Gymnosperma glutinosum: a comparative study. J Ethnopharmacol. 2007;110(2):343-7.
Koo DH, Lee JL, Kim TW, Chang HM, Ryu MH, Yook JH, et al. Adjuvant chemotherapy with 5-fluorouracil, doxorubicin and mitomycin-C (FAM) for 6 months after curative resection of gastric carcinoma. Europ J Surg Oncol (EJSO). 2007;33(7):843-8.
Siregar JE, Syafruddin D, Matsuoka H, Kita K, Marzuki S. Mutation underlying resistance of Plasmodium berghei to atovaquone in the quinone binding domain 2 (Qo2) of the cytochrome b gene. Parasitology International. 2008;57(2):229-32.
López L, Ll I. Las naftoquinonas: más que pigmentos naturales. Rev Mex Cienc Farmacéut. 2011;42(1):6-17.
Ihlenfeldt W, Bolton E, Bryant S. The PubChem chemical structure sketcher. J Cheminform. 2009;1(1):20.
Chen B, Wild D, Guha R. PubChem as a source of polypharmacology. J Chem Inf Model. 2009;49(9):2044-55.
Degtyarenko K, de Matos P, Ennis M, Hastings J, Zbinden M, McNaught A, et al. ChEBI: a database and ontology for chemical entities of biological interest. Nucleic Acids Res. 2008:D344-50.
de Matos P, Alcantara R, Dekker A, Ennis M, Hastings J, Haug K, et al. Chemical Entities of Biological Interest: an update. Nucleic Acids Res. 2009;38(Database issue):D249-54.
Molfetta FA, Bruni AT, Honorio KM, da Silva AB. A structure-activity relationship study of quinone compounds with trypanocidal activity. Eur J Med Chem. 2005 Apr;40(4):329-38.
Grellier P, Maroziene A, Nivinskas H, Sarlauskas J, Aliverti ANC. Antiplasmodial activity of quinones: Roles of aziridinyl substituents and the inhibition of Plasmodium falciparum glutathione reductase. Arch Biochem Bioph. 2010;494(1):32-9.
El Hage S, Ane Ml, Stigliani JL, Marjorie M, Vial H, Baziard-Mouysset GV, et al. Synthesis and antimalarial activity of new atovaquone derivatives. Europ J Med Chem. 2009;44(11):4778-82.
Sagar S, Green IR. Pro-apoptotic activities of novel synthetic quinones in human cancer cell lines. Canc Lett. 2009;285(1):23-7.
Rios-Luci C, Bonifazi EL, Leon LG, Montero JC, Burton G, Pandiella A, et al. beta-Lapachone analogs with enhanced antiproliferative activity. Eur J Med Chem. 2012;53C:264-74.
Rodríguez EGR, Méndez D, Martelo J, Zambrano R. Análogos de quinonas naturales con actividad antibacteriana. Scien Techn. 2007;33:281-3.
Jung YS, Joe BY, Cho SJ, Konishi Y. 2,3-Dimethoxy-5-methyl-1,4-benzoquinones and 2-methyl-1,4-naphthoquinones: glycation inhibitors with lipid peroxidation activity. Bioorg Med Chem Lett. 2005;15(4):1125-9.
Spickett CM, Wiswedel I, Siems W, Zarkovic K, Zarkovic N. Advances in methods for the determination of biologically relevant lipid peroxidation products. Free radical research. 2010;44(10):1172-202.
Kumar S, Malachowski WP, DuHadaway JB, LaLonde JM, Carroll PJ, Jaller D, et al. Indoleamine 2,3-dioxygenase is the anticancer target for a novel series of potent naphthoquinone-based inhibitors. J Med Chem. 2008;51(6):1706-18.
Adams S, Braidy N, Bessesde A, Brew BJ, Grant R, Teo C, et al. The kynurenine pathway in brain tumor pathogenesis. Canc res. 2012;72(22):5649-57.
Ertl P, Cooper D, Allen G, Slater MJ. 2-chloro-3-substituted-1,4-naphthoquinone inactivators of human cytomegalovirus protease. Bioorg Med Chem Lett. 1999;9(19):2863-6.
Lien JC, Huang LJ, Wang JP, Teng CM, Lee KH, Kuo SC. Synthesis and antiplatelet, antiinflammatory and antiallergic activities of 2-substituted 3-chloro-1,4-naphthoquinone derivatives. Bioorg Med Chem. 1997;5(12):2111-20.
Hodnett EM, Wongwiechintana C, Dunn WJ, Marrs P. Substituted 1,4-naphthoquinones vs. the ascitic sarcoma 180 of mice. J Med Chem. 1983;26(4):570-4.
Urdaneta N, Roberts K, Vera R, Vera A, Gutiérrez E, Aguilar Y, et al. Papel de la mitomicina C como adyuvante a la radioterapia en el tratamiento de cáncer del cuello uterino localmente avanzado; Role of mitomycin C as adyunct in the treatment of locally advanced cancer of uterine cervix. Gac méd Caracas. 1998;106(3):310-31.
Hillard EA, de Abreu FC, Ferreira DCM, Jaouen G, Goulart MOF, Amatore C. Electrochemical parameters and techniques in drug development, with an emphasis on quinones and related compounds. Chem Commun. 2008 (23):2612-28.
Begleiter A, Leith MK. Activity of quinone alkylating agents in quinone-resistant cells. Cancer research. 1990;50(10):2872-6.
Efferth T, Dunstan H, Sauerbrey A, Miyachi H, Chitambar CR. The anti-malarial artesunate is also active against cancer. Int J Oncol. 2001;18(4):767-73.
Moret EE, de Boer M, Hilbers HW, Tollenaere JP, Janssen LH, Holthuis JJ, et al. In vivo activity and hydrophobicity of cytostatic aziridinyl quinones. J Med Chem. 1996;39(3):720-8.
Habbal OA, Al-Jabri AA, El-Hag AH, Al-Mahrooqi ZH, Al-Hashmi NA. In-vitro antimicrobial activity of Lawsonia inermis Linn (henna). A pilot study on the Omani henna. Sau Med J. 2005;26(1):69.
Machado T, Pinto A, Pinto M, Leal I, Silva M, Amaral A, et al. In vitro activity of Brazilian medicinal plants, naturally occurring naphthoquinones and their analogues, against methicillin-resistant Staphylococcus aureus. Internat J Antimicr Agents. 2003;21(3):279-84.
Gardner PR. Superoxide production by the mycobacterial and pseudomonad quinoid pigments phthiocol and pyocyanine in human lung cells. Arch Biochem Biophys. 1996;333(1):267-74.
Malik AR, Urbanska M, Macías M, Skalecka A, Jaworski J. Beyond control of protein translation: What we have learned about the non-canonical regulation and function of mammalian target of rapamycin (mTOR). Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics. 2013.
Klaus V, Hartmann T, Gambini J, Graf P, Stahl W, Hartwig A, et al. 1, 4-Naphthoquinones as inducers of oxidative damage and stress signaling in HaCaT human keratinocytes. Archives of biochemistry and biophysics. 2010;496(2):93-100.
Wu J, Chien CC, Yang LY, Huang GC, Cheng MC, Lin CT, et al. Vitamin K3-2,3-epoxide induction of apoptosis with activation of ROS-dependent ERK and JNK protein phosphorylation in human glioma cells. Chemico-biological interactions. 2011;193(1):3-11.
Ogawa M, Koyanagi J, Sugaya A, Tsuda T, Ohguchi H, Nakayama K, et al. Cytotoxic activity toward KB cells of 2-substituted naphtho[2,3-b]furan-4,9-diones and their related compounds. Biosc, biotech, biochem. 2006;70(4):1009-12.
Takano A, Hashimoto K, Ogawa M, Koyanagi J, Kurihara T, Wakabayashi H, et al. Tumor-specific cytotoxicity and type of cell death induced by naphtho[2,3-b]furan-4,9-diones and related compounds in human tumor cell lines: relationship to electronic structure. Anticancer research. 2009;29(1):455-64.
Tlahuice Flores A, Pérez Tijerina E, Mejía Rosales S. Modos vibracionales de C60 obtenidos mediante el método DFT. Universidad Autónoma de Nuevo León, México: Ciencia UANL. 2007;10(3):261-68.
Jiménez-Alonso S, Guasch J, Estévez-Braun A, Ratera I, Veciana J, Ravelo AG. Electronic and cytotoxic properties of 2-amino-naphtho[2,3-b]furan-4,9-diones. J Org Chem. 2011;76(6):1634-43.
Pan J, Simamura E, Koyama J, Shimada H, Hirai KI. Induced apoptosis and necrosis by 2-methylfuranonaphthoquinone in human cervical cancer HeLa cells. Cancer detection and prevention. 2000;24(3):266-74.
Trachootham D, Zhou Y, Zhang H, Demizu Y, Chen Z, Pelicano H, et al. Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by beta-phenylethyl isothiocyanate. Cancer Cell. 2006;10(3):241-52.
Verrax J, Beck R, Dejeans N, Glorieux C, Sid B, Pedrosa RC, et al. Redox-active quinones and ascorbate: an innovative cancer therapy that exploits the vulnerability of cancer cells to oxidative stress. Anticancer Agents Med Chem. 2011;11(2):213-21.
Ferreira RA, Oliveira AB, Gualberto SA, Vitor RW. Activity of natural and synthetic naphthoquinones against Toxoplasma gondii, in vitro and in murine models of infection. Parasite. 2002;9(3):261-9.
Muller K, Sellmer A, Wiegrebe W. Potential antipsoriatic agents: lapacho compounds as potent inhibitors of HaCaT cell growth. J Nat Prod. 1999;62(8):1134-6.
Eyong KO, Kumar PS, Kuete V, Folefoc GN, Nkengfack EA, Baskaran S. Semisynthesis and antitumoral activity of 2-acetylfuranonaphthoquinone and other naphthoquinone derivatives from lapachol. Bioorg Med Chem Lett. 2008;18(20):5387-90.
Lehmann B. HaCaT cell line as a model system for vitamin D3 metabolism in human skin. J Invest Dermatol. 1997;108(1):78-82.
Baumer W, Hoppmann J, Rundfeldt C, Kietzmann M. Highly selective phosphodiesterase 4 inhibitors for the treatment of allergic skin diseases and psoriasis. Inflamm Aller-Dr Targ. 2007;6(1):17-26.
Tse WP, Che CT, Liu K, Lin ZX. Evaluation of the anti-proliferative properties of selected psoriasis-treating Chinese medicines on cultured HaCaT cells. J Ethnopharmacol. 2006;108(1):133-41.
Klebe G, Abraham U, Mietzner T. Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J Med Chem. 1994;37(24):4130-46.
Pérez-Sacau E, Díaz-Penate RG, Estévez-Braun A, Ravelo AG, García-Castellano JM, Pardo L, et al. Synthesis and pharmacophore modeling of naphthoquinone derivatives with cytotoxic activity in human promyelocytic leukemia HL-60 cell line. J Med Chem. 2007;50(4):696-706.
Tseng CH, Chen YL, Yang SH, Peng SI, Cheng CM, Han CH, et al. Synthesis and antiproliferative evaluation of certain iminonaphtho[2,3-b]furan derivatives. Bioorg Med Chem. 2010;18(14):5172-82.
Fernández-Calienes Valdés A, Mendiola Martínez J, Acuña Rodríguez D, Caballero Lorenzo Y, Scull Lizama R, Gutiérrez Gaitén Y. Actividad antimalárica y citotoxicidad de extractos hidroalcohólicos de seis especies de plantas usadas en la medicina tradicional cubana. Rev Cubana Med Trop. 2011;63(1):52-7.
Quispe A, Zavala D, Rojas J. Efecto citotóxico selectivo in vitro de muricin H (acetogenina de Annona muricata) en cultivos celulares de cáncer de pulmón. Rev Per Med Exp Sal Púb. 2006;23(4):265-9.
Urbanek RA, Suchard SJ, Steelman GB, Knappenberger KS, Sygowski LA, Veale CA, et al. Potent reversible inhibitors of the protein tyrosine phosphatase CD45. J Med Chem. 2001;44(11):1777-93.
Shin HM, Lee YR, Chang YS, Lee JY, Kim BH, Min KR, et al. Suppression of interleukin-6 production in macrophages by furonaphthoquinone NFD-37. Int Immunopharmacol. 2006;6(6):916-23.
Hayashi T, Smith FT, Lee KH. Antitumor agents. 89. Psychorubrin, a new cytotoxic naphthoquinone from Psychotria rubra and its structure-activity relationships. J Med Chem. 1987;30(11):2005-8.
Goulart MlOF, Zani CL, Tonholo J, Freitas LR, de Abreu FC, Oliveira AdB, et al. Trypanocidal activity and redox potential of heterocyclic- and 2-hydroxy-naphthoquinones. Bioorganic & Med Chem Lett. 1997;7(15):2043-8.
Mi Q, Lantvit D, Reyes-Lim E, Chai H, Zhao W, Lee IS, et al. Evaluation of the potential cancer chemotherapeutic efficacy of natural product isolates employing in vivo hollow fiber tests. J Nat Prod. 2002;65(6):842-50.
Weiss CR, Moideen SV, Croft SL, Houghton PJ. Activity of extracts and isolated naphthoquinones from Kigelia pinnata against Plasmodium falciparum. J Nat Prod. 2000;63(9):1306-9.
Kviecinski MR, Pedrosa RC, Felipe KB, Farias MS, Glorieux C, Valenzuela M, et al. Inhibition of cell proliferation and migration by oxidative stress from ascorbate-driven juglone redox cycling in human bladder-derived T24 cells. Biochem Biophys Res Commun. 2012;421(2):268-73.
Simamura E, Hirai KI, Shimada H, Pan J, Koyama J. Mitochondrial damage prior to apoptosis in furanonaphthoquinone treated lung cancer cells. Canc detect prevent. 2003;27(1):5-13.
Miguel del Corral JM, Castro MA, Oliveira AB, Gualberto SA, Cuevas C, San Feliciano A. New cytotoxic furoquinones obtained from terpenyl-1,4-naphthoquinones and 1,4-anthracenediones. Bioorg Med Chem. 2006;14(21):7231-40.
Simamura E, Hirai KI, Shimada H, Pan J, Koyama J. Mitochondrial damage prior to apoptosis in furanonaphthoquinone treated lung cancer cells. Cancer detection and prevention. 2003;27(1):5-13.