2013, Número 1
<< Anterior Siguiente >>
Rev Mex Neuroci 2013; 14 (1)
Flujo sanguíneo y actividad celular del sistema nervioso: relación estructura-función
Cortés-Sol A, Pacheco P
Idioma: Español
Referencias bibliográficas: 81
Paginas: 31-38
Archivo PDF: 252.83 Kb.
RESUMEN
Las células endoteliales del sistema nervioso presentan características
anatómicas especiales, representando la barrera
de protección máxima al cerebro. Debido a la interacción
directa entre el sistema circulatorio y el sistema nervioso;
un mal funcionamiento en la irrigación sanguínea
cerebral conlleva a afecciones cerebrovasculares y
la incidencia de ciertas enfermedades neurodegenerativas.
En la actualidad, el interés por detectar
cambios en el flujo sanguíneo y visualizar áreas activas
dentro del cerebro, se ha dividido en diferentes aspectos
anatómicos y funcionales del sistema circulatorio. Cambios
en la vasculatura (pérdida de vasos, angiogénesis)
han sido asociados con disfunciones tales como tumores
cerebrales, Alzheimer y epilepsia. Es por ello que debemos
dirigir la atención a la estructura y función de los
capilares cerebrales y conocer más a fondo su interrelación
con la actividad celular, así como las técnicas empleadas
en el monitoreo del suplemento sanguíneo en regiones cerebrales.
En conclusión, quizá el entendimiento de las funciones
de la célula endotelial como unidad reguladora
de la homeostasis vascular podría arrojar nuevas interpretaciones
sobre los mecanismos de intercambio entre la
sangre y el tejido cerebral, además de ampliar la comprensión
de diversas enfermedades cerebrovasculares, la
formulación de tratamientos preventivos y el desarrollo
farmacológico de drogas anti-angiogénicas.
REFERENCIAS (EN ESTE ARTÍCULO)
Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 2005; 57: 173-85.
Sagare AP, Bell RD, Zlokovic BV. Neurovascular dysfunction and faulty amyloid b-peptide clearance in Alzheimer disease. Cold Spring Harb Perspect Med 2012; 2: a011452.
Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci 2004; 5: 347-60.
Ellika SK, Jain R, Patel SC, Scarpace L, Schultz LR, Rock JP, et al. Role of perfusion CT in glioma grading and comparison with conventional MR imaging features. AJNR Am J Neuroradiol 2007; 28: 1981-7.
Schwartz TH. Neurovascular coupling and epilepsy: hemodynamic markers for localizing and predicting seizure onset. Epilepsy Curr 2007; 7: 91-4.
Thompson JK, Peterson MR, Freeman RD. Single-neuron activity and tissue oxygenation in the cerebral cortex. Science 2003; 299: 1070-1.
Pasley BN, Inglis BA, Freeman RD. Analysis of oxygen metabolism implies a neural origin for the negative BOLD response in human visual cortex. Neuroimage 2007; 36: 269-76.
Peters A, Palay S, Webster H. The fine structure of the nervous system. Neurons and their supporting cells. 3rd Ed. Oxford: University Press; 1991: 344-55.
Ganong WF. Dynamics of blood & lymph flow, Cap 30. Circulation through special regions, Cap. 32. In: Review of medical physiology. New York: Mc Graw Hill; 2000, p. 579-593, 614-22.
Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson J, eds. Molecular Biology of the Cell. New York: Garland Science, Taylor & Francis Group; 2007.
Rhodin JA. Ultrastructure of mammalian venous capillaries, venules, and small collecting veins. J Ultrastruct Res 1968; 25: 452-500.
Parent A. Blood supply of the central nervous system. En: Parent A, Carpenter’s Human Neuroanatomy. Baltimore: Williams and Wilkins; 1996, p. 93-128.
Tilton RG. Capillary pericytes: perspectives and future trends. J Electron Microsc Tech 1991; 19: 327-44.
Metea MR, Newman EA. Glial cells dilate and constrict blood vessels: a mechanism of neurovascular coupling. J Neurosci 2006; 26: 2862-70.
Peppiatt CM, Howarth C, Mobbs P, Attwell D. Bidirectional control of CNS capillary diameter by pericytes. Nature 2006; 443: 700-4.
Bonkowski D, Katyshev V, Balanov RD, Borisov A, Dore-Duffy P. The CNS microvascular pericyte: pericyte-astrocyte crosstalk in the regulation of tissue survival. Fluids Barriers CNS 2011; 8: 8.
Balabanov R, Dore-Duffy P. Role of the CNS microvascular pericyte in the blood-brain barrier. J Neurosci Res 1998; 53: 637-44.
Starling EH. On the absorption of fluids from the connective tissue spaces. J Physiol 1896; 19: 312-26.
Stolze F. Cerebral blood flow in hyperammonemia: heterogeneity and Starlingforces in capillaries. Metab Brain Dis 2002; 17: 229-35.
Renkin EM. Multiple pathways of capillary permeability. Circul Res 1977; 41: 735-46.
Simionescu N, Simionescu M, Palade GE. Differentiated microdomains on the luminal surface of the capillary endothelium. I. Preferential distribution of anionic sites. J Cell Biol 1981; 90: 605-13.
Schinkel AH, Smit JJM, Van Tellingen O, Beijnen JH, Wagenaar E, Van Deemter L, et al. Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 1994; 77: 491-502.
Bolz S, Farrell CL, Dietz K, Wolburg H. Subcellular distribution of glucose transporter (GLUT-1) during development of the blood-brain barrier in rats. Cell Tissue Res 1996; 284: 355-65.
Kissel K, Hamm S, Schulz M, Vecchi A, Garlanda C, Engelhardt B. Immunohistochemical localization of the murine transferrin receptor (TfR) on blood-tissue barriers using novel anti-TfR monoclonal antibody. Histochem Cell Biol 1998; 110: 63-72.
Gross PM, Sposito NM, Pettersen SE, Fenstermacher JD. Differences in function and structure of the capillary endothelium in gray matter, white matter and a circumventricular organ of rat brain. Blood Vessels 1986; 23: 261-70.
Bendayan M. Morphological and cytochemical aspects of capillary permeability. Microsc Res Tech 2002; 57: 327-49.
Sarin H. Physiologic upper limits of pore size of different blood capillary types and another perspective on the dual pore theory of microvascular permeability. J Angiog Res 2010; 2: 14.
Resse TS, Karnovsky MJ. Fine structural localization of a blood-brain-barrier to exogenous peroxidase. J Cell Biol 1967; 34: 207-17.
Brightman MW, Reese TS. Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol 1969; 40: 648-77.
Maynard EA, Schultz RL, Pease DC. Electron microscopy of the vascular bed of rat cerebral cortex. Am J Anat 1957; 100: 409-22.
Dermietzel R, Krause D. Molecular anatomy of the blood-brain barrier as defined by immunocytochemistry. Int Rev Cytol 1991; 127: 57-109.
Pardridge WM. The blood-brain barrier. Permeability, substrate trans-port and drug and gene targeting. In: Edvinsson L, Krause DN (eds.). Cerebral blood flow and metabolism. 2nd. Ed. Philadelphia: Lippincott Williams & Wilkins; 2002, p. 119-39.
Cornford EM, Hyman S. Localization of brain luminal and abluminal transporters with immunogold electron microscopy. J Am Soc Exp Neuro Therap 2005; 2: 27-43.
Stewart PA, Coomber BL. Astrocytes and the blood-brain barrier. In: Fedoroff S, Vernadakis A, eds. Astrocytes. Vol. I. Development, morphology and regional specialization of astrocytes. Orlando, FL: Academic Press; 1986.
Kandel ER, Schwartz JH, Jessell TM (eds.). Principles of neural science. 4th. Ed. New York: McGraw-Hill; 2000: 523-47.
Villegas JC, Broadwell RD. Transcytosis of protein through the mammalian cerebral epithelium and endothelium. II. Adsorptive transcytosis of WGAHRP and the blood-brain and brain-blood barriers. J Neurocytol 1993; 22: 67-80.
Laurie GW, Leblond CP, Martin GR. Localization of type IV collagen, laminin, heparin sulfate proteoglycan, and fibronectin to the basal lamina of basement membranes. J Cell Biol 1982; 95: 340-4.
Charron AJ, Xu W, Bacallao RL, Wandinger-Ness A. Cablin: a novel protein of the capillary basal lamina. Am J Physiol Heart Circ Physiol 1999; 277: 1985-96.
del Zoppo GJ, Milner R. Integrin-matrix interactions in the cerebral microvasculature. Arterioscler Thromb Vasc Biol 2006; 26: 1966-75.
Lee B, Clarke D, Al Ahmad A, Kahle M, Parham C, Auckland L, et al. Perlecan domainV is neuroprotective and proangiogenic following ischemic stroke in rodents. J Clin Invest 2011; 121: 3005-23.
Bouchaud C, Bosler O. The circumventricular organs of the mammalian brain with special reference to monoaminergic innervation. Int Rev Cytol 1986; 105: 283-327.
Tao-Cheng JH, Nagy Z, Brightman MW. Tight junctions of the brain endothelium in vitro are enhanced by astroglial. J Neurosc 1987; 7: 3293-9.
Neuhaus J, Risau W, Wolburg H. Induction of blood-brain barrier characteristics in bovine brain endothelial cells by rat astroglial cells in transfilter coculture. Ann NY Acad Sci 1991; 633: 578-80.
Yang Y, Rosenberg GA. Blood brain barrier breakdown in acute and chronic cerebrovascular disease. Stroke 2011; 42: 3323-28.
Dore-Duffy P, Owen C, Balavanov R, Murphy S, Beaumont T, Rafols JA. Pericytes migration from the vascular wall in response to traumatic brain injury. Microvas Res 2000; 60: 55-69.
Motti ED, Imhof HG, Yasargil MG. The terminal vascular bed in the superficial cortex of the rat. An SEM study of corrosion casts. J Neurosurg 1986; 65: 834-46.
Rosell A, Cuadrado E, Ortega-Aznar A, Hernández-Guillamon M, Lo EH, Montaner J. MMP-9- positive neutrophil infiltration is associated to bloodbrain barrier breakdown and basal lamina type IV collagen degradation during hemorrhagic transformation after human ischemic stroke. Stroke 2008; 39: 1121-6.
Black JE, Sirevaag AM, Greenough WT. Complex experience promotes capillary formation in young rat visual cortex. Neurosci Lett 1987; 83: 351-5.
Black JE, Issacs KR, Anderson BJ, Alcantara AA, Greenough WT. Learning causes synaptogenesis whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats. Proc Natl Acad Sci USA 1990; 87: 5568-72.
Scremin OU. Cerebral vascular system. In: Paxinos G (ed.). The rat nervous system. New York: Academic Press; 1995: 3-25.
Villringer A, Dirnagl U. Coupling of brain activity and cerebral blood flow: basis of functional neuroimaging. Cerebrovasc Brain Metab Rev 1995; 7: 240-76.
Tata DA, Anderson BJ. A new method for the investigation of capillary structure. J Neurosc Meth 2002; 113: 199-206.
Harrison R, Harel N, Panesar J, Mount R. Blood capillary distribution correlates with hemodynamic-based functional imaging in cerebral cortex. Cereb Cortex 2002; 12: 125-233.
Hudetz AG, Greene AS, Feher G, Knuese DE, Cowley Jr AW. Imaging system for three-dimensional mapping of cerebrocortical capillary networks in vivo. Microvasc Res 1993; 46: 293-309.
Debbage PL, Sölder E, Seidl S, Hutzler P, Hugl B, Ofner D, et al. Intravital lectin perfusion analysis of vascular permeability in human micro- and macroblood vessels. Histochem Cell Biol 2001; 116: 349-59.
Ivanov KP, Kalinina MK, Levkovich Yu I. Blood flow velocity in capillaries of brain and muscles and its physiological significance. Microvasc Res 1981; 22: 143-55.
Dirnagl U, Villringer A, Einhaulp KM. In vivo confocal scanning laser microscopy of the cerebral microcirculation. J Microsc 1992; 165: 147-57.
Morris DC, Yeich T, Khalighi MM, Soltanian-Zadeh H, Zhang ZG, Chopp M. Microvascular structure after embolic focal cerebral ischemia in the rat. Brain Res 2003; 972: 31-7.
Göbel U, Theilen H, Kuschinsky W. Congruente of total and perfused capillary network in rat brains. Circul Res 1990; 66: 271-81.
Bell MA, Scarrow WG. Staining for microvascular alkaline phosphatase in thick celloidin sections of nervous tissue: morphometric and pathological applications. Microvasc Res 1984; 27: 189-203.
Chilingaryan A, Chilingaryan AM, Martin GG. The three-dimensional direction of microvasculature bed in the brain of white Rattus norvergicus by a Ca2+- ATPase method. Brain Res 2006; 1070: 131-8.
Freygang WH, Sokoloff L. Quantitative measurements of regional circulation in the central nervous system by the use of radioactive inert gas. Adv Biol Med Phys 1958; 6: 263-79.
Kety SS, Schmitdt CF. The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values. J Clin Invest 1948; 27: 476-83.
Kennedy C, Des Rosiers MH, Jehle JW, Reivich M, Sharp F, Sokoloff L. Mapping of functional neural pathways by autoradiographic survey of local metabolic rate with [14C] deoxyglucose. Science 1975; 187: 850-3.
Pillai JJ. Insights into adult postlesional language cortical plasticity provided by cerebral blood oxygen level-dependent functional MR imaging. AJNR Am J Neuroradiol 2010; 31: 990-6.
Roy CS, Sherrington CS. On the regulation of the blood-supply of the brain. J Physiol 1890; 11: 85-158.
Cavaglia M, Dombrowsk SM, Drazba Z, Vasanji A, Bokesch PM, Janigro D. Regional variation in brain capillary density and vascular response to ischemia. Brain Res 2001; 910: 81-93.
Casella GT, Marcillo A, Bunge MB, Wood PM. New vascular tissue rapidly replaces neural parenchyma and vessels destroyed by a contusion injury to the rat spinal cord. Exp Neurol 2002; 173: 63-76.
Argandoña EG, Lafuente JV. Effects of dark-rearing on the vascularization of the developmental rat visual cortex. Brain Res 1996; 732: 43-51.
Swain RA, Harris AB, Wiener EC, Dutka MV, Morris HD, Theien BE, et al. Prolonged exercise induces angiogenesis and increases cerebral blood volume in primary motor cortex of the rat. Neuroscience 2003; 117: 1037-46.
Kholer SJ, Jennings V, Todd S, Rhyu I, Williams NI, Cameron YJ, et al. Exercise increase capillary volume in the neostriatum of macaque monkeys. San Diego CA. Society for Neurosciences 2007, Abstract.
Alonso G, Galibert E, Duvoid-Guillou A, Vincent A. Hyperosmotic stimulus induces reversible angiogenesis within the hypothalamic magnocellular nuclei of the adult rat: a potential role for neuronal vascular endothelial growth factor. BMC Neurosci 2005; 24: 6-20.
Bo Q, Long G, Jinlu M, Yi L. Antiangiogenesis therapy might have the unintended effect of promoting tumor metastasis by increasing an alternative circulatory system. Med Hypoth 2010; 74: 360-1.
Theodosis DT. Oxytocin-secreting neurons: a physiological model of morphological neuronal and glial plasticity in the adult hypothalamus. Front Neuroendocrinol 2002; 23: 101-35.
Wakerley JB. Milk ejection and its control. In: Knobil and Neill (eds.). Physiology of reproduction. New York: Academic Press, Elsevier; 2006, p. 3129-76.
Theodosis DT, Poulain DA. Activity-depend neuronal-glial and synaptic plasticity in the adult mammalian hypothalamus. Neuroscience 1993; 57: 501-35.
Theodosis DT, Trailin A, Poulain DA. Remodeling of astrocytes, a prerequisite for synapse turnover in the adult brain? Insights from the oxytocin system of the hypothalamus. Am J Physiol Regul Integr Comp Physiol 2006; 290: 1175-82.
Stern JE, Armstrong WE. Reorganization of the dendritic trees of oxytocin and vasopressin neurons of the rat supraoptic nucleus during lactation. J Neurosc 1998; 18: 841-53.
Uribe-Querol E, Martínez-Martínez E, Tapia-Rodríguez M, Hernández RL, Toscano-Márquez B, Padilla P, et al. Metabolic induces shift in the hypothalamic-neurohypophysial system during lactation: implications for interpreting their relationship with neuronal activity. Neuroscience 2005; 134: 1217-22.
Barres BA. New roles for glia. J Neurosci 1991; 11: 3685-94.
Kuffler SW, Potter DD. Glia in the leech central nervous system: physiological properties and neuron-glia relationship. J Neurophysiol 1964; 27: 290-320.