2013, Número 2
<< Anterior Siguiente >>
Rev Mex Neuroci 2013; 14 (2)
La arquitectura cerebral como responsable del proceso de aprendizaje
Dzib-Goodin A
Idioma: Español
Referencias bibliográficas: 43
Paginas: 81-85
Archivo PDF: 554.89 Kb.
RESUMEN
La educación ha centrado sus esfuerzos en el desarrollo
curricular y ha olvidado al cerebro como procesador
del aprendizaje que moldea sus capacidades dependiendo
de las experiencias con el medio. En este sentido,
la educación tradicional plantea que todas las personas
aprenden de la misma forma y esto va en contra
del funcionamiento cerebral. Este artículo pone sobre la
mesa que la creación de habilidades, cambios y mejoras
se hacen dependiendo de la arquitectura cerebral.
Para ello hace un recorrido por la relación proceso-estructura
asociada para concluir que la poda neuronal y
posterior creación de redes neuronales funcionan bajo
la
“ley del más fuerte” y que aquellas áreas que se desarrollan
mejor crearán las habilidades dominantes e impedirán
el desarrollo de otras en la competencia por el
espacio cerebral, explicando desde esta perspectiva las
diferencias cognitivas en cada persona, dejando de
lado la idea de la educación normalizadora.
REFERENCIAS (EN ESTE ARTÍCULO)
Stanovich KS. Rational and irrational thought: the thinking that IQ tests miss. Scientific American Mind 2009; 20: 34-9.
Valadez SMD, Betancourt MJ, Zavala BMA. Alumnos superdotados y talentosos. Mexico: Manual Moderno; 2006.
Martínez TM, Guirardo SA. Alumnado con altas capacidades. Barcelona: Grao; 2010.
Benarós S, Lipina SJ, Segretin MS, Hermida MJ, Colombo JA. Neurociencia y educación: hacia la construcción de puentes interactivos. Rev Neurol 2010; 50: 179-86.
Solovieva Y, Lázaro GE, Quintanar RL. Mecanismos de los lóbulos frontales en niños preescolares con déficit de atención y niños normales. Acta Neurol Colomb 2008; 24(2): 64-75
Miranda A, Jarque S, Soriano M. Trastorno de hiperactividad con déficit de atención: polémicas actuales acerca de su definición, epidemiología, bases etiológicas y aproximaciones a la intervención. Rev Neurol 1999; 28(Supl. 2): S182-S188.
Townsend J, Courchesne E, Covington J, Westerfield M, Singer Harris N, Lyden P, Lowry T y Press GA. Spatial attention deficits in patients with acquired or developmental cerebellar abnormality. J Neuroscien 1999; 19: 5632-43.
Baron SG, Thompson Schill S, Weber M y Osherson D. An early stage of conceptual combination: superimposition of constituent concepts in left anterolateral temporal lobe. Cognitive neuroscience 2010; 1: 44-51.
Feurra M, Fuggeta G, Rossi S y Walsh V The role of the left inferior frontal gyrus in episodic encoding of faces: an interference study by repetitive transcraneal magnetic stimulation. Cognitive Neuroscience 2010; 1: 118-25.
Virtue S, Czarlinski J. Hemispheric differences for enhancement and suppression mechanism during story comprehension. Cognitive Neuroscience 2010; 1: 89-95.
Crow TJ. A theory of the origin of cerebral asymmetry: epigenetic variation superimposed on a fixed right-shift. Brain and cognition 2010; 15: 289-303.
Goncalves FT, Sousa GC, Oliverira MJP, Carmo FMJ, Filipe SP, y Goulao CA. Agenesia del cuerpo calloso. Rev Neurol 2003; 36: 701-6.
Schlaug G, Forgeard M, Zhu L, Norton A, Norton A, Winner E. Traininginduced neuroplasticity in your children. Annals of the New York Academy of Science 2009; 1169: 205-8.
Serra GJM, Adan A, Pérez PM, Lachica J, Membrives S. Bases neurales del procesamiento númerico y del cálculo. Rev Neurol 2010; 50: 39-46.
Eger E, Michel V, Thirion B, Amadon A, Dehaene S, Kleinschmidt A. Deciphering cortical number coding from human brain activity patterns. Biology 2009; 19: 1608-15.
Piazza M, Dehaene S. From number neurons to mental arithmetic: the cognitive neuroscience of number sense. In: Gazzaniga M, et al. (ed.). The cognitive neuroscience. 3rd. USA: Brandford Books; 2004. p. 865 – 877.
Idiazábal AMA, Saperas RM. Procesamiento auditivo en el trastorno específico del lenguaje. Rev Neurol 2008; 46(Supl. 1): S91-S95.
Pinel P, Dehaene S. Beyond hemispheric dominance: brain regions underlying the joint lateralization of language and arithmetic to left hemispheric. J Cognit Neuroscien 2010; 22: 48-66.
Hickok G. The role of mirror neurons in speech perception and action word semantics. Language and cognitive processes 2010; 25: 749-76.
Lozano A, Ramírez M, Ostrosky SF. Neurobiología de la dislexia del desarrollo: una revisión. Rev Neurol 2001; 33: 1-6.
Dehaenem S, Nakamura K, Jobert A, Kuroki C, Ogawa S, Cohen L. Why do children make errors reading? Neural correlates of mirror invariance in the visual word form area. Neuroimage 2010; 49: 1837-48.
Etchepareborda MC, López LMJ. Estructura citoarquitectónica de las áreas del lenguaje. Rev Neurol 2005; 40(Supl. 1): S103-S106.
Artigas-Pallares J. Problemas asociados con la dislexia. Rev Neurol 2002; 34(Supl. 1): S7-S13.
Carboni RA, del Río GD, Capilla A, Maestú F, Ortíz T. Bases neurobiológicas de las dificultades del aprendizaje. Rev Neurol 2006; 42(Supl. 2): S171-S175.
Aicardi J. El síndrome de Ladau-Kleffner. Rev Neurol 1999; 29: 380-5.
Piven J, Arndt S, Bailey J, Havercamp S, Andreasen NC, Palmer P. An MRI study of brain size in autism. Am J Psychiatry 1995; 152: 1145-9.
Sparks BF, Friedman SD, Shaw DW, Aylward EH, Echelard D, Artru AA, Maravilla KR, et al. Brain Structural abnormalities in young children with autism spectrum disorder. Neurology 2002; 59: 184-92.
Hardan AY, Minshew NJ, Mallikarjuhn y Keshavan MS. Brain volume in autism. J Child Neurol; 16: 421-4.
Just MA, Cherkassky V, Keller TA, Minshew NJ. Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity. Brain 2004; 127: 1811-21.
Heaton P, Wallace GL. Annotation: The savant syndrome. Journal of child psychology and psychiatry 2004; 45: 899-911.
Cukier SH. Aspectos clínicos, biológicos y neuropsicológicos del Trastorno Autista: hacia una perspectiva integradora. Rev Arg de Psiquiat 2005; XVI: 273-8.
Perich AJ, Aduna de Paz M, Valls A, Muñoz YJA. Espectroscopía talámica por resonancia magnética en el autismo. Rev Neurol 2002; 34 (Sup. l1): S68-S71.
Courchesne E, Carper R, Akshoomoff N. Evidence of brain overgrowth in the first year of life in autism. JAMA 2003; 290: 337-44.
Maldonado A, García L, Resino MC, Dominguez ML Muñoz JA y Otero C. Imagen metabólica por tomografía por emisión de positrones usando [18 F]- fluorodeoxiglucosa en los trastornos del desarrollo. Rev Neurol 2004; 38 (Supl. 1): S24-S27. Correspondencia: Dra. Dzib Goodin Alma. Freelance neuroscience writer. 6450 Cape Cod CT Lisle, Illinois 60532, USA. Tel.: 001 (913) 7103 259. Correo electrónico: alma@almadzib.com Artículo recibido: Septiembre 17, 2013. Artículo aceptado: Octubre 20, 2013.
Kates WR, Burnette CP, Eliez S, Strunge LA, Kaplan D, Landa R, Reiss AL, Pearlson GD. Neuroanatomic variation in monozygotic twin pairs discordant for the narrow phenotype for autism. Am J Psyciatry 2004; 161: 539-46.
Herbert MR. Large brains in autism the challenge of pervasive abnormality. Neuroscientist 2005; 11: 417-40.
Courchesne E, Pierce K, Schumann CM, Redcay E, Buckwalter JA, Kennedy DP, Morgan J. Mapping early brain development in autism. Neuron 2007; 56: 399-413.
Artigas PJ. Perfiles cognitivos de la inteligencia límite. Fronteras del retraso mental. Rev Neurol 2003; 36(Supl. 1): S161-S167.
Henríquez-Henríquez M, Zamorano MF, Rothhammer-Engel F, Aboitiz F. Modelos neurocognitivos para el trastornos por déficit de atención/ hiperactividad y sus implicaciones en el reconocimiento de endofenotipos. Rev Neurol 2010; 50: 109-16.
Fischetti M. Computers vs Brain. Scientific American 2011; 305: 104.
Eger E, Michel V, Thirion B, Amadon A, Dehaene S, Kleinschmidt A. Deciphering cortical number coding from human brain activity patterns. Biology 2009; 19: 1608-15.
Hawkins J, Blakeslee S. On Intelligence. USA: Times books; 2004.
Pritchard JK. How we are evolving. Scientific American 2010; 303: 41-7.