2012, Número 3
<< Anterior Siguiente >>
Rev Mex Angiol 2012; 40 (3)
Glicosaminoglicanos en las enfermedades vasculares
Frati-Munari AC
Idioma: Español
Referencias bibliográficas: 100
Paginas: 89-99
Archivo PDF: 255.91 Kb.
RESUMEN
Los glicosaminoglicanos (GAGs) están formados por largas cadenas de dímeros constituidos por un aminoazúcar y un ácido urónico que están sulfatados y se unen a proteínas, formando proteoglicanos. Los GAGs forman parte de la matriz extracelular de todos los órganos y tienen múltiples funciones. En los vasos constituyen el glicocáliz endotelial y la matriz extracelular del endotelio y subendotelio. El glicocáliz es la primera barrera entre las células endoteliales y el torrente sanguíneo, con sus fuerzas de tensión, moléculas de adhesión, células circulantes y sistema de coagulación. En la matriz extracelular los GAGs (sobre todo heparán sulfato) regulan la acción de quimiocinas, citosinas, factores de crecimiento y la migración celular, así como la filtración de moléculas a través del endotelio. La hipertensión venosa crónica deteriora el glicocáliz y permite la acción de moléculas de adhesión y la inflamación que daña el endotelio y las capas venosas más profundas, lo que deforma las valvas y permite la filtración de líquido, proteínas y células al espacio pericapilar y perivenular que causan inflamación de la piel y finalmente su ulceración. El deterioro del glicocáliz y la disfunción endotelial son los pasos iniciales importantes en la aterosclerosis y también en la microangiopatía diabética. En la patogenia de estos procesos intervienen los GAGs. Los GAGs con acción terapéutica en enfermedades vasculares incluyen la heparina y la sulodexida; la primera para la prevención y tratamiento de trombosis, la segunda es particularmente útil en la enfermedad venosa crónica avanzada con úlceras cutáneas, también se han utilizado exitosamente en arteriopatía obstructiva de los miembros inferiores y en microangiopatía diabética.
REFERENCIAS (EN ESTE ARTÍCULO)
Varki A, Sharon N. Chapter 1. Historical background and overview. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, et al. (ed.). Essential of glycobiology. 2nd. Ed. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 2009 NBK 1931 PMID: 20301255.
Yung S, Chan TM. Glycosaminoglycans and proteoglycans: overlooked entities? Perit Dial Int 2007; 27 (Suppl. 2): S104-S109.
Varki A, Lowe JB. Chapter 6. Biological roles of glycans. In: Varki A, Cummings RD, Esko JD Freeze HH, Stanley P, Bertozzi CR, et al. (eds.). Essentials of glycobiology. 2nd. ed. Cold Spring Harbor (NY) Cold Spring Harbor Laboratory Press: 2009 NBK1897PMID: 20301233.
Esko JD, Kimata K, Lindahl U. Chapter 16. Proteoglycans and sulfated glycosaminoglycans. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, et al. (ed.). Essentials of glycobiology. 2nd. Ed. Cold Spring Harbor (NY)Cold Spring Harbor Laboratory Press: 2009 NBK 1900 PMID 20301236.
Kim CW, Goldberger OA, Gallo RL, Bernfield M. Members of syndecan family of heparan sulphated proteoglycans are expressed in distict cell-, tissue-, and development specific patterns. Molec Biol Cell 1994; 5: 797-805.
Carey DJ. Syndecans: multifunctional cell-surface co-receptors. Biochem J 1997; 327: 1-16.
Kjellén L, Lindahl U. Proteoglycans: structures and interactions. Ann Rev Biochem 1991; 60: 443-75.
Iozzo RV. Matrix proteoglycans: from molecular design to cellular function. Annu Rev Biochem 1998; 67: 609-52.
Olsen BR. Life without perlecan has its problems. J Cell Biol 1999; 147: 909-11.
Yung S, Chan TM. Glycosaminoglycans and proteoglycans: overlooked entities? Perit Dial Int 2007; 27 (Suppl. 2): S104-S109.
Nieuwdorp M, Meuwese MC, Vink H, et al. The endothelial glycocalyx: a potential barrier between health and vascular disease. Curr Opin Lipidol 2005; 16: 507-11.
Becker BF, Chappell D, Bruegger D, Annecke T, Jacob M. Therapeutic strategies targeting the endothelial glycocalyx: acute deficits, but great potential. Cardiovasc res 2010; 87: 300-10.
Trowbridge JM, Gallo RL. Dermatan sulfate: new functions from an old glycosaminoglycan. Glycobiology 2002; 12: 117R-125R.
Tovar AM, de Mattos DA, Stelling MP, Sarcinelli-Luz BS, Nazareth RA, Monrau PA. Dermatan sulfate is the predominant antithrombotic glycosaminoglycan in vessel walls: implications for a possible physiological function of heparin cofactor II. Biochem Biophys Acta 2005; 15: 45-53.
He L, Giri TK, Vicente CP, Tollefsen DM. Vascular dermatan sulfate regulates the antithromboytic activity of heparin cofactor II. Blood 2008; 111: 4118-25.
Mulivor AW, Lipowsky HH. Inflammation- and ischemiainduced shedding of venular glycocalyx. Am J Physiol Heart Circ Physiol 2004; 286: H1672-H1680.
Nieuwdorp M, Van Haeften TW, Gouverneur MC, Mooij HL, Van Lieshout MH, Levi M, et al. Loss of endothelial glycocalix during acute hyperglycemia coincides with endothelial dysfunction, and coagulation in vivo. Diabetes 2006; 55: 480-6.
Nieuwdorp M, Mooij HL, Kroon J, Atasever B, Spaan JAE, Ince C, et al. Endothelial glycocalyx damage coincides with microalbuminuria in type 1 diabetes. Diabetes 2006; 55: 1127-32.
Nieuwdorp M, Meuwese MC, Mooij HL, van Lieshout MH, Hayden A, Levi M, et al. Tumor necrosis factor-alpha inhibition protects against endotoxin-induced endothelial glycocalyx perturbation. Atherosclerosis 2009; 2012: 296-303.
Secomb TW, Hsu R, Pries AR. Effect of the endothelial surface layer on transmission of fluid shear stress to endothelial cells. Biorrheology 2001; 38: 143-50.
Bergan JJ, Schmid-Schönbein GW, Coleridge Smith PD, Nicolaides A, Boisseau MR, Eklof B. Chronic venous disease. N Engl J Med 2006; 355: 488-98.
Wali MA, Eid RA. Intimal changes in varicose veins: an ultrastructural study. J Smooth Muscle Res 2002; 38: 63- 74.
Wolanska M, Sobolewski K, Glowinski S, Kowaleski R, Plonski A. Glycosaminoglycans of normal veins and their alterations in varicose veins and varicose veins complicated by thrombophlebitis. Eur Surg Res 2001; 33: 28-32.
Nicolaides AN. Chronic venous disease and the leukocyte- endothelium interaction: from symptoms to ulceration. Angiology 2005; 56(Suppl. 1): S11-S19.
Raffetto JD, Khalil RA. Mechanisms of varicose vein formation: valve dysfunction and wall dilation. Phlebology 2008; 23: 85-98.
Bergan JJ, Pascarella L, Schmid-Schönbein GW. Pathogenesis of primary chronic venous disease: insights from animal models of venous hypertension. J Vasc Surg 2008; 47: 183-92.
Pappas PJ, You R, Rameshwar P, Gorti R, DeFouw DO, Phillips CK, et al. Dermal tissue fibrosis in patients with chronic insufficiency is associated with increased transforming growth factor-b1 gene expression and protein production. J Vasc Surg 1999; 30: 1129-45.
Meissner MH, Gloviczki P, Bergan J, Kistner RL, Morrison N, Pannier F, et al. Primary chronic venous disorders. J Vasc Surg 2007; 46: 54S-67S.
Simka M. Cellular and molecular mechanisms of venous ulcers development. The “puzzle” theory. Int Angiol 2010; 29: 1-19.
Van den Berg BM, Spaan JAE, Rolf TM, Vink H. Atherogenic region and diet diminish glycocalyx dimension and increase intima media ratios at the murine carotid artery bifurcation. Am J Physiol 2006; 290: H915-H920.
Wang S, Okano M, Yoshida Y. Ultrastructure of endothelial cells and lipid deposition on the flow dividers of brachiocephalic and left subclavian arterial bifurcation of the rabbit aorta. J Jpn Atheroscler Soc 1991; 19: 1089-100.
Edwards IJ, Wagner JD, Vogl-Willis CA, Litwak KN, Cefalu WT. Arterial heparan sulfate is negatively associated with hyperglycemia and atherosclerosis in diabetic monkeys. Cardiovasc Diabetol 2004; 3: 6-17.
Constantinescu AA, Vink H, Spaan JA. Elevated capillary tube hematocrit reflects degradation of endothelial cell glycocalyx by oxidized LDL. Am J Physiol 2001; 280: H1051-H1057.
Vink H, Constantinescu AA, Spaan JA. Oxidized lipoproteins degrade the endothelial surface layer: implications for platelet-endothelial cell adhesion. Circulation 2000; 101: 1500-2.
Gouverneur M, van den Berg B, Nieuwdorp M, Stroes E, Vink H. Vasculoprotective properties of endothelial glycocalyx: effects of fluid shear stress. J Int Med 2006; 259: 393-400.
Irace C, Cortese C, Fiaschi E, Carallo C, Farinaro E, Gnasso A. Wall shear stress is associated with intimamedia thickness and carotid aterosclerosis in subjects at low coronary heart disease risk. Stroke 2004; 35: 464-8.
Weinbaum S, Zhang X, Han Y, Vink H, Cowin SC. Mechanotransduction and flow across the endothelial glycocalyx. PNAS 2003; 100: 7988-95.
Mochizuki S, Vink H, Hiramatsu O, Kajita T, Shigeto F, Spaan JAE, Kajiya F. Role of hyaluronic acid glycosaminoglycan in shear-induced endothelium-derived nitric oxide release. Am J Physiol Heart Circ Physiol 2003; 285: H722-H726.
Florian JA, Kosky JR, Ainslie K, Pang Z, Dull RO, Tarbell JM. Heparan sulfate proteoglycan is a mechanosensor on endothelial cells. Circ Res 2003; 93: e136-e142.
Henry CB, Duling BR. Permeation of the luminal capillary glycocalyx is determined by hialuronan. Am J Physiol 1999; 277: H508-H514.
Zuurbier CJ, Demirci C, Koeman A, Vink H, Ince C. Short-term hyperglycemia increases endothelial glycocalyx permeability and acutely decreases lineal density of capillaries with flowing red blood cells. J Appl Physiol 2005; 99: 1471-6.
Perrin RM, Harper SJ, Bates DO. A role of endothelial glycocalyx in regulating microvascular permeability in diabetes mellitus. Cell Biochem Biophys 2007; 49: 65-72.
Giuffrè L, Cordey AS, Monai N, Tardy Y, Xchapira M, Spertini O. Monocyte adhesion to activated aortic endothelium: role of L-selectin and heparan sulfate proteoglycan. J Cell Biol 1997; 136: 945-56.
Celermajer DS, Sorensen KE, Bull C, Robinson J, Deanfield JE. Endothelium-dependent dilation in the systemic arteries of asymptomatic subjects relates to coronary risk factors and their interactions. J Am Coll Cardiol 1994; 24: 1468-74.
Neunteufl T, Katzenschlager R, Hassan A, Glogar D, Bauer P, Weidinger F. Systemic endotelial dysfunction is realted to the extent and severity of coronary artery disease. Atherosclerosis 1997; 129: 111-8.
Davignon J, Ganz P. Atherosclerosis: evolving vascular biology and clinical implications. Role of endothelial dysfunction in atherosclerosis. Circulation 2004; 109: III-27- III-32.
Badimón L, Martínez-González J. Disfunción endotelial. Rev Esp cardiol Supl 2006; 6: 21A-30A.
Meuwese MC, Mooij HL, Nieuwdorp M, van Lith B, Mark R, Vink H, et al. Partial recovery of endothelial glycocalix upon rosuvastatin therapy in patients with heterozygous familial hipercolesterolemia. J Lipid Res 2009; 50: 148-53.
Ylä-Herttuala S, Sumuvuori H, Karkola K, Möttönen M, Nikkari T. Glycosaminoglycans in normal and atherosclerotic human coronary arteries. Lab Invest 1986; 54: 402-7.
Wasty F, Alavi MZ, Moor S. Distribution of glycosaminoglycans in the intima of human aortas: changes in atherosclerosis and diabetes mellitus. Diabetologia 1993; 36: 316-22.
Pillarisetti S, Paka L, Obunike JC, Berglund L, Goldberg IJ. Subendothelial retention of lipoprotein (a). Evidence that reduced heparan sulfate promotes lipoprotein binding to subendothelial matrix. J Clin Invest 1997; 100: 867-87.
Vogl-Willis CA, Edwards IJ. High-glucose-induced structural changes in the heparan sulfate proteoglycan, perlecan, of cultured human aortic endotelial cells. Biochim Biophys Acta 2004; 1672: 36-45.
Segev A, Nili N, Strauss BH. The role of perlecan in arterial injury and angiogenesis. Cardiovasc Res 2004; 63: 603-10.
Pillarisetti S. Lipoprotein modulation of endothelial heparan sulfate proteoglycans (perlecan) and atherogenicity. Trend Cardiovasc Med 2000; 10: 60-5.
Hadi HAR, Suwaidi JA. Endothelial dysfunction in diabetes mellitus. Vasc Health Risk Manag 2007; 3: 853-76.
Tamsma JT, van der Born J, Brujin JA, Assmann KJ, Weening JJ, Berden J. Expression of glomerular extracellular matrix components in human diabetic nephropathy: decrease of heparan sulphate in the glomerular Basement membrane. Diabetologia 1994; 37: 313-20.
Katz A, Van-Dijk DJ, Aingorn H, Erman A, Davies M, Darmon D, et al. Involvement of human heparanase in the patogénesis of diabetic nephropathy. Isr Med Assoc J 2002; 4: 996-1002.
Van Det NF, Van den Born J, Tamsma JT, Verhagen NA, Berden JH, Bruijn JA, et al. Effects of high glucose production of heparan sulfate proteoglycan by mesangial and epithelial cells. Kidney Int 1996; 49: 1079-89.
Marchi E, Barbanti M, Milani MR, Breccia-Fratadocchi A, Fini A, Silvestro L, Da Col R. Pharmacokinetic studies using radio-and fluorescence- labelled glycosaminoglycans. Part 1. Congresso Italo-Tedesco: Trends in glycosaminoglycan research: Results and perspectives on novel approaches to pharmacokinetics and metabolism. Villa Vigomi, Como, Italy, May 14/16, 1992.
Haremberg J. Review of pharmacodynamics, pharmacokinetics, and therapeutic properties of sulodexide. Med Res Rev 1998; 18: 1-20.
Ofosu FA. Pharmacological actions of sulodexide. Seminars Tromb Hemost 1998; 24: 127-38.
Lasierra-Cirujeda J, Coronel P, Aza MJ, Gimeno M. Use of sulodexide in patients with peripheral vascular disease. J Blood Med 2010; 1: 105-115. Ref 25 y 26 de mono.
Lauver DA, Booth EA, Vhite AJ, Poradosu E, Lucchesi BR. Sulodexide attenuates myocardial ischemia/reperfusion injury and the deposition of C –reactive protein in areas of infarction without affecting hemostasis. J Pharmacol Exp Ther 2005; 312: 794-800.
Lauver DA, Lucchesi BR. Sulodexide: a renewed interest in this glycosaminoglycan. Cardiovasc Drug Rev 2006; 24: 214-26.
Ciszewicz M, Polubinska A, Antoniewicz A, Suminska- Jasinska K, Breborowicz A. Sulodexide supresses inflammation in human endotelial cells and prevents glucose citotoxicity. Transl Res 2009; 153: 118-23.
Kristová V, Lisková S, Sotniková R, Vojto R, Kurtansky A. Sulodexide improves endothelial dysfunction in streptozotocin- induced diabetes in rats. Physiol Res 2008; 57: 491-4.
Vasquez J, Mathison Y, Romero-Vacchione E, Suarez C. Efecto del sulodexide sobre la capacidad de relajación y alteraciones estructurales de la arteria aorta en ratas diabéticas por estreptozotocina. Invest Clin 2010.
Mathison Y, Garrido MR, Israel A, Quero Z, Fernández H. Efecto del glicosaminoglicano sulodexida sobre la actividad de la sintasa de óxido nítrico en la corteza renal de ratas con diabetes tipo 1. Rev Latinoamer Hipert 2008; 3: 182-3.
Broekhuizen LN, Lemkes BA, Mooij L, Meuwese MC, Verberne H, Holleman F, et al. Effect of sulodexide on endotelial glycocalyx and vascular permeability in patients with type 2 diabetes mellitus. Diabetologia 2010; 53: 2646-55.
Rovere V, Amerio A, Mauro M, Manini G, Battaglia C, Trimarchi A, Nocita E. Efficacia d’azione e tollerabilità di una nuova formulazione orale di sulodexide nel trattamento della sindrome post-flebitica. Studio controllato vs. Eparina s.c. Nuova Stampa Med Ital 1992; 12: 25-35.
Cospite M, Miglio G, Ferrara F, Cospite V, Palazzini E. Haemodynamic effects of sulodexide in post-thrombophlebitic syndromes. Acta Ther 1992; 18: 149-61.
Cospite M, Ferrara F, Cospite V, Palazzini E. Sulodexide and the microcirculatory component in microphlebopathies. Curr Med Res Opin 1992; 13: 56-60.
Allegra C. Ruolo attuale dei glicosaminoglicani e prospettive in terapia. Minerva Angiol 1993; 18 (Suppl. 3, N. 1): 45-9.
Saviano M, Maleti O, Liguori L. Double-blind, doubledummy, randomized, multi-centre clinical assessment of the efficacy, tolerability and dose-effect relationship of sulodexide in chronic venous insufficiency. Curr Res Med Opin 1993; 13: 96-108.
Scondotto G, Aloisi D, Ferrari P, Martini L. Treatment of venous leg ulcers with sulodexide. Angiology 1999; 50: 883-9.
Coccheri S, Scondotto G, Agnelli G, Aloisi D, Palazzini E, Zamboni V. Randomized, double-blind multicentre, placebo controlled study of sulodexide in the treatment of venous leg ulcers. Thromb Haemost 2002; 87: 947-52.
Kucharzewski M, Franec A, Hoziolek H. Treatment of venous leg ulcers with sulodexide. Phlebologie 2003; 32: 115-20.
Apollonio A, Mosti G, Ricci E. Microcircolo e ulcere venose. Acta Vulnol 2008; 6: 125-32.
Di Domenica M. Trombosi delle vene superficiali e varicoflebiti: terapia antitrombotica con sulodexide. Minerva Cardioang 2000; 18 (Suppl. 2, N.1): 152-4.
Di Stefano F, Vinci M. Terapia antitrombotica delle flebopatie con sulodexide. Studio controllato de efficacia e tollerabilità. Eur Rev Med Pharmacol Sci 1990; 12: 507-15.
Errichi BM, Cesarone MR, Belcaro G, Marinucci R, Ricci A, Ippolito A, et al. Prevention of recurrent deep venous thrombosis with sulodexide: the SanVal registry. Angiology 2004; 55: 243-9.
Broekhuizen LN, Mooij HL, Kastelein JJ, Stroes ES, VinK H, Nieuwdorp M. Endothelial Glycocalyx as potencial diagnostic and therapeutic target in cardiovascular disease. Curr Opin Lipidol 2009; 20: 57-62.
Drake-Holland AJ, Noble MI. The important new drug target in cardiovascular medicine-the vascular glycocalyx. Cardiovasc Hematol Disord Drug tTargets 2009; 9: 118-23.
Gaddi A, Galetti C, Illuminati B, Nascetti S. Meta-analysis of some results of clinical trial son sulodexide therapy in peripheral occlusive arterial disease. J Int Med Res 1996; 24: 389-406.
Coccheri S, Scondotto G, Agnelli G, Palazzini E, Zamboni V. Sulodexide in the treatment of intermittent claudication. Eur Heart J 2002; 23: 1057-65.
Della Marchina M, Bellucci M, Palazzini E. Medium ter moral sulodexide treatment of diabetic patients suffering from peripheral arterial obstructive disease: a double- blind, placebo-controlled study. Progress Rep 1992; 4: 5-15.
Guidetti G. La terapia della vertigine vascolare nella pratica ambulatoriale: esperienza multicentrica (VascVert Study). Otorinolaringol 2005; 55: 237-46.
Parnetti L, Mari D, Abate G, Balestren R, Cucinotta D, Coppola R, et al. Vascular dementia italian sulodexide study (VADISS). Clinical and biological results. Thrombosis Res 1997; 87: 225-33.
Stivali G, Cerroni F, Bianco P, Fiaschetti P, Ciarci R. Carotid plaque reduction after medical treatment. Circulation 2005; 112: e276-e277.
Rubbi F, Cantagalli A, Puglioli R, Caramazza N. Il sulodexide nella terapia delle occlusioni venose retiniche. Boll Oculist 1991; 70: 3-7.
Rubbi F, Canova N, Puglioli R, Caramazza N, Galazzetti- Muscinelli A, Costantino ML. Retinal vein occlusions: clinical study of treatment with sulodexide. Eur J Clin Res 1993; 4: 19-27.
Corbu C, Predol D, Goicea D. Tratamentul cu sulodexid in obstructiile venoase retiniene. Oftalmologia 1996; 40: 393-7.
Anfossi DG, Bella GM, Chiriotti S. Studio comparativo di due differenti protocolli terapeutici utilizzati nel trattamento della trombosi venosa retinica. Minerva Oftalmol 1992; 34: 29-36.
Szaflik J, Kaminska A. Usefulness of Vessel Due F (sulodexide) in treatment of patients with diabetic retinopathy, senile macular degeneration and retinal vein occlusion. Okulistyka 2000; 3: 1-4.
Rubbi F, Caramazza R, Boccia S, Cozza N. The effects of sulodexide on diabetic retinopathy. Minerva Cardioangiol 2000; 18 (Suppl. 1): 81-3.
D’Aloia A, Dati M, Della Corte M, Romano M, Lanza M, Romano A. Assessment of the effectiveness of sulodexide on diabetic patients. Boll Oculist 2001; 80: 37-40.
Kerimov KT, Shakmaliyeva AM. Sulodexide effect on the course of non-proliferative diabetic retinopathy. Azerbaijan Med J 2002; 1: 72-6.
Gambaro G, Kinalska I, Oksa A, Pont’Uch P, Hertlova M, Olsovsky J, et al. Oral sulodexide reduces albuminuria in microalbuminuric and macroalbuminuric type 1 and type 2 diabetic patients: the Di.N.A.S. randomized trial. J Am Soc Nephrol 2002; 13: 1615-25.
Achour A, Kacem M, Dibej K, Skhiri H, Bourani S, El May M. One year course of oral sulodexide in the management of diabetic nephropathy. J Nephrol 2005; 18: 568-74.
Gaddi AV, Cicero AFG, Gambaro G. Nephroprotective action of glycosaminoglycans: why the pharmacological properties of sulodexide might be reconsidered. Int J Nephrol Renovasc Dis 2010; 3: 99-105.