2013, Número 3
<< Anterior Siguiente >>
Gac Med Mex 2013; 149 (3)
Los sexoesteroides y la diferenciación sexual cerebral: ¿la contaminación de xenoestrógenos modificaría la estructura social humana?
Zhang L, Neme-Bechara V, Escobar A, Irles C
Idioma: Español
Referencias bibliográficas: 81
Paginas: 325-333
Archivo PDF: 102.82 Kb.
RESUMEN
Los xenoestrógenos (XE), también llamados «químicos endocrinoperturbadores», son productos industriales que se unen a receptores endógenos de los sexoesteroides (SE), hormonas que, además de regular fundamentalmente la función reproductiva, influyen determinantemente en la estructura y la función del cerebro. Los XE, al actuar como agonistas estrogénicos débiles y/o antagonistas androgénicos, pueden alterar el dimorfismo sexual cerebral. En este artículo, revisaremos primero los conocimientos actuales sobre la influencia de los SE sobre el funcionamiento cerebral; posteriormente, examinaremos las evidencias científicas sobre los efectos conductuales de los XE en mamíferos; finalmente, analizaremos los posibles impactos de esta contaminación industrial sobre la estructura de la sociedad humana.
REFERENCIAS (EN ESTE ARTÍCULO)
Dugatkin LA, Dugatkin AD. Extrinsic effects, estimating opponents’ RHP, and the structure of dominance hierarchies. Biol Lett. 2007;3(6): 614-6.
Arnold AP. The organizational-activational hypothesis as the foundation for a unified theory of sexual differentiation of all mammalian tissues. Horm Behav. 2009;55:570-8.
Morris JA, Jordan CL, Breedlove SM. Sexual differentiation of the vertebrate nervous system. Nat Neurosci. 2004;7(10):1034-9.
Jost A. Problems of fetal endocrinology: the adrenal glands. Recent Prog Horm Res. 1966;22:541-74.
Naftolin F, Ryan KJ, Davies IJ, et al. The formation of estrogens by central neuroendocrine tissues. Recent Prog Horm Res. 1975;31:295-319.
Lenz KM, Nugent BM, McCarthy MM. Sexual differentiation of the rodent brain: dogma and beyond. Front Neurosci. 2012;6:26.
Montelli S, Peruffo A, Zambenedetti P, et al. Expression of aromatase P450 (AROM) in the human fetal and early postnatal cerebral cortex. Brain Res. 2012;1475:11-8.
Hall E, John GCA. Tratado de fisiología médica. 12.a ed. Elsevier España; 2011.
McCarthy MM. Estradiol and the developing brain. Physiol Rev. 2008;88(1):91-124.
McCarthy MM, Arnold AP. Reframing sexual differentiation of the brain. Nat Neurosci. 14(6):677-83.
Morali G, Larsson K, Beyer C. Inhibition of testosterone-induced sexual behavior in the castrated male rat by aromatase blockers. Horm Behav. 1977;9(3):203-13.
Sodersten P, Eneroth P, Hansson T, et al. Activation of sexual behaviour in castrated rats: the role of oestradiol. J Endocrinol. 1986; 111(3):455-62.
Balthazart J, Baillien M, Cornil CA, Ball GF. Preoptic aromatase modulates male sexual behavior: slow and fast mechanisms of action. Physiol Behav. 2004;83(2):247-70.
Gerardin DC, Piffer RC, García PC, Moreira EG, Pereira OC. Effects of maternal exposure to an aromatase inhibitor on sexual behaviour and neurochemical and endocrine aspects of adult male rat. Reprod Fertil Dev. 2008;20(5):557-62.
Northcutt KV, Lonstein JS. Sex differences and effects of neonatal aromatase inhibition on masculine and feminine copulatory potentials in prairie voles. Horm Behav. 2008;54(1):160-9.
Hu ZY, Bourreau E, Jung-Testas I, Robel P, Baulieu EE. Neurosteroids: oligodendrocyte mitochondria convert cholesterol to pregnenolone. Proc Natl Acad Sci USA. 1987;84(23):8215-9.
Weidenfeld J, Siegel RA, Chowers I. In vitro conversion of pregnenolone to progesterone by discrete brain areas of the male rat. J Steroid Biochem. 1980;13(8):961-3.
Guennoun R, Fiddes RJ, Gouezou M, Lombes M, Baulieu EE. A key enzyme in the biosynthesis of neurosteroids, 3 beta-hydroxysteroid dehydrogenase/delta 5-delta 4-isomerase (3 beta-HSD), is expressed in rat brain. Brain Res Mol Brain Res. 1995;30(2):287-300.
Konkle AT, McCarthy MM. Developmental time course of estradiol, testosterone, and dihydrotestosterone levels in discrete regions of male and female rat brain. Endocrinology. 2011;152(1):223-35.
Gorski RA, Gordon JH, Shryne JE, Southam AM. Evidence for a morphological sex difference within the medial preoptic area of the rat brain. Brain Research. 1978;148(2):333-46.
Arai Y, Sekine Y, Murakami S. Estrogen and apoptosis in the developing sexually dimorphic preoptic area in female rats. Neuroscience Research. 1996;25:403-7.
Mong JA, Glaser E, McCarthy MM. Gonadal steroids promote glial differentiation and alter neuronal morphology in the developing hypothalamus in a regionally specific manner. J Neurosci. 1999;19(4): 1464-72.
Mong JA, McCarthy MM. Steroid-induced developmental plasticity in hypothalamic astrocytes: implications for synaptic patterning. J Neurobiol. 1999;40(4):602-19.
Mong JA, Roberts RC, Kelly JJ, McCarthy MM. Gonadal steroids reduce the density of axospinous synapses in the developing rat arcuate nucleus: an electron microscopy analysis. J Comp Neurol. 2001;432(2): 259-67.
Hajszan T, Milner TA, Leranth C. Sex steroids and the dentate gyrus. Prog Brain Res. 2007;163:399-415.
Arnold AP, Xu J, Grisham W, Chen X, Kim YH, Itoh Y. Minireview: sex chromosomes and brain sexual differentiation. Endocrinology. 2004;145(3):1057-62.
Matsuda KI, Mori H, Kawata M. Epigenetic mechanisms are involved in sexual differentiation of the brain. Rev Endocr Metab Disord. 2012;13(3):163-71.
Zuloaga DG, Puts DA, Jordan CL, Breedlove SM. The role of androgen receptors in the masculinization of brain and behavior: what we’ve learned from the testicular feminization mutation. Horm Behav. 2008;53(5):613-26.
Wright CL, Schwarz JS, Dean SL, McCarthy MM. Cellular mechanisms of estradiol-mediated sexual differentiation of the brain. Trends Endocrinol Metab. 2010;21(9):553-61.
Matsumoto A, Arai Y. Synaptogenic effect of estrogen on the hypothalamic arcuate nucleus of the adult female rat. Cell Tissue Res. 1979;198(3):427-33.
Carrer HF, Aoki A. Ultrastructural changes in the hypothalamic ventromedial nucleus of ovariectomized rats after estrogen treatment. Brain Res. 1982;240(2):221-33.
Cohen RS, Pfaff DW. Ultrastructure of neurons in the ventromedial nucleus or the hypothalamus in ovariectomized rats with or without estrogen treatment. Cell Tissue Res. 1981;217(3):451-70.
García-Segura LM, Pérez J, Jones E, Naftolin F. Loss of sexual dimorphism in rat arcuate nucleus neuronal membranes with reproductive aging. Exp Neurol. 1991;112(1):125-8.
Gleason ED, Fuxjager MJ, Oyegbile TO, Marler CA. Testosterone release and social context: when it occurs and why. Front Neuroendocrinol. 2009;30(4):460-9.
Fuxjager MJ, Forbes-Lorman RM, Coss DJ, Auger CJ, Auger AP, Marler CA. Winning territorial disputes selectively enhances androgen sensitivity in neural pathways related to motivation and social aggression. Proc Natl Acad Sci USA. 2010;107(27):12393-8.
Fuxjager MJ, Montgomery JL, Marler CA. Species differences in the winner effect disappear in response to post-victory testosterone manipulations. Proc Biol Sci. 2011;278(1724):3497-503.
Oliveira RF, Silva A, Canario AV. Why do winners keep winning? Androgen mediation of winner but not loser effects in cichlid fish. Proc Biol Sci. 2009;276(1665):2249-56.
Sperry TS, Wacker DW, Wingfield JC. The role of androgen receptors in regulating territorial aggression in male song sparrows. Horm Behav. 2010;57(1):86-95.
García-Segura LM, Balthazart J. Steroids and neuroprotection: new advances. Front Neuroendocrinol. 2009;30(2):v-ix.
Woolley CS. Acute effects of estrogen on neuronal physiology. Annu Rev Pharmacol Toxicol. 2007;47:657-80.
García-Segura LM. Hormone and brain plasticity. Oxford series in behavioral neuroendocrinology. 1st ed. Oxford: Oxford University Press, Inc; 2009.
McCarthy MM. The two faces of estradiol: effects on the developing brain. Neuroscientist. 2009;15(6):599-610.
Administration FUSFaD. Bisphenol A (BPA): use in food contact application. 2012 March 30. Available from: http://www.fda.gov/newsevents/publichealthfocus/ucm064437.htm.
Leranth C, Hajszan T, Szigeti-Buck K, Bober J, MacLusky NJ. Bisphenol A prevents the synaptogenic response to estradiol in hippocampus and prefrontal cortex of ovariectomized nonhuman primates. Proc Natl Acad Sci USA. 2008;105(37):14187-91.
Zhang Z, Alomirah H, Cho HS, et al. Urinary bisphenol A concentrations and their implications for human exposure in several Asian countries. Environ Sci Technol. 2011;45(16):7044-50.
Calafat AM, Kuklenyik Z, Reidy JA, Caudill SP, Ekong J, Needham LL. Urinary concentrations of bisphenol A and 4-nonylphenol in a human reference population. Environ Health Perspect. 2005;113(4):391-5.
Calafat AM, Weuve J, Ye X, et al. Exposure to bisphenol A and other phenols in neonatal intensive care unit premature infants. Environ Health Perspect. 2009;117(4):639-44.
Sathyanarayana S, Alcedo G, Saelens BE, et al. Unexpected results in a randomized dietary trial to reduce phthalate and bisphenol A exposures. J Expo Sci Environ Epidemiol. 2013.
Ikezuki Y, Tsutsumi O, Takai Y, Kamei Y, Taketani Y. Determination of bisphenol A concentrations in human biological fluids reveals significant early prenatal exposure. Hum Reprod. 2002;17(11):2839-41.
Taylor JA, Welshons WV, Vom Saal FS. No effect of route of exposure (oral; subcutaneous injection) on plasma bisphenol A throughout 24 h after administration in neonatal female mice. Reprod Toxicol. 2008;25 (2):169-76.
Wolstenholme JT, Rissman EF, Connelly JJ. The role of bisphenol A in shaping the brain, epigenome and behavior. Horm Behav. 2011;59(3): 296-305.
Cantonwine D, Meeker JD, Hu H, et al. Bisphenol a exposure in Mexico City and risk of prematurity: a pilot nested case control study. Environ Health. 2010;9:62.
Yeo M, Berglund K, Hanna M, et al. Bisphenol A delays the perinatal chloride shift in cortical neurons by epigenetic effects on the Kcc2 promoter. Proc Natl Acad Sci USA. 2013.
Kundakovic M, Champagne FA. Epigenetic perspective on the developmental effects of bisphenol A. Brain Behav Immun. 2011;25(6):1084-93.
Rubin BS, Lenkowski JR, Schaeberle CM, Vandenberg LN, Ronsheim PM, Soto AM. Evidence of altered brain sexual differentiation in mice exposed perinatally to low, environmentally relevant levels of bisphenol A. Endocrinology. 2006;147(8):3681-91.
Wolstenholme JT, Edwards M, Shetty SR, et al. Gestational exposure to bisphenol a produces transgenerational changes in behaviors and gene expression. Endocrinology. 2012;153(8):3828-38.
Farabollini F, Porrini S, Della Seta D, Bianchi F, Dessi-Fulgheri F. Effects of perinatal exposure to bisphenol A on sociosexual behavior of female and male rats. Environ Health Perspect. 2002;110 Suppl 3:409-14.
Jasarevic E, Sieli PT, Twellman EE, et al. Disruption of adult expression of sexually selected traits by developmental exposure to bisphenol A. Proc Natl Acad Sci USA. 2011;108(28):11715-20.
Rosenfeld CS. Effects of maternal diet and exposure to bisphenol A on sexually dimorphic responses in conceptuses and offspring. Reprod Domest Anim. 2012;47 Suppl 4:23-30.
Vom Saal FS, Akingbemi BT, Belcher SM, et al. Chapel Hill bisphenol A expert panel consensus statement: integration of mechanisms, effects in animals and potential to impact human health at current levels of exposure. Reprod Toxicol. 2007;24(2):131-8.
Vom Saal FS, Hughes C. An extensive new literature concerning lowdose effects of bisphenol A shows the need for a new risk assessment. Environ Health Perspect. 2005;113(8):926-33.
Vom Saal FS, Welshons WV. Large effects from small exposures. II. The importance of positive controls in low-dose research on bisphenol A. Environ Res. 2006;100(1):50-76.
Welshons WV, Nagel SC, Vom Saal FS. Large effects from small exposures. III. Endocrine mechanisms mediating effects of bisphenol A at levels of human exposure. Endocrinology. 2006;147 Suppl 6:56-69.
Welshons WV, Thayer KA, Judy BM, Taylor JA, Curran EM, Vom Saal FS. Large effects from small exposures. I. Mechanisms for endocrinedisrupting chemicals with estrogenic activity. Environ Health Perspect. 2003;111(8):994-1006.
Braun JM, Yolton K, Dietrich KN, et al. Prenatal bisphenol A exposure and early childhood behavior. Environ Health Perspect. 2009;117(12): 1945-52.
Crinnion WJ. Toxic effects of the easily avoidable phthalates and parabens. Altern Med Rev. 2010;15(3):190-6.
López-Carrillo L, Hernández-Ramírez RU, Calafat AM, et al. Exposure to phthalates and breast cancer risk in northern Mexico. Environ Health Perspect. 2010;118(4):539-44.
Harvey PW, Darbre P. Endocrine disrupters and human health: could oestrogenic chemicals in body care cosmetics adversely affect breast cancer incidence in women? J Appl Toxicol. 2004;24(3):167-76.
Vo TT, Jeung EB. An evaluation of estrogenic activity of parabens using uterine calbindin-d9k gene in an immature rat model. Toxicol Sci. 2009;112(1):68-77.
Darbre PD, Aljarrah A, Miller WR, Coldham NG, Sauer MJ, Pope GS. Concentrations of parabens in human breast tumours. J Appl Toxicol. 2004;24(1):5-13.
Barr L, Metaxas G, Harbach CA, Savoy LA, Darbre PD. Measurement of paraben concentrations in human breast tissue at serial locations across the breast from axilla to sternum. J Appl Toxicol. 2012;32(3):219-32.
Darbre PD, Harvey PW. Paraben esters: review of recent studies of endocrine toxicity, absorption, esterase and human exposure, and discussion of potential human health risks. J Appl Toxicol. 2008;28(5):561-78.
Mikula P, Kružíková K, Dobšíková R, Haruštiaková D, Svobodová Z. Influence of propylparaben on vitellogenesis and sex ratio in juvenile zebrafish (Danio rerio). J University of Veterinary and Pharmaceutical Sciences in Brno, Czech Republic. Acta Vet Brno. 2009;78:319-26.
Kawaguchi M, Irie K, Morohoshi K, et al. Maternal isobutyl-paraben exposure alters anxiety and passive avoidance test performance in adult male rats. Neurosci Res. 2009;65(2):136-40.
Kawaguchi M, Morohoshi K, Imai H, Morita M, Kato N, Himi T. Maternal exposure to isobutyl-paraben impairs social recognition in adult female rats. Exp Anim. 2010;59(5):631-5.
Meeker JD, Yang T, Ye X, Calafat AM, Hauser R. Urinary concentrations of parabens and serum hormone levels, semen quality parameters, and sperm DNA damage. Environ Health Perspect. 2011;119(2):252-7.
Glander HG, Rytter M, Schonborn C. Studies on the mycotic and bacterial risk of contamination and the use of nipagin in the artificial insemination of cryosperm. Zentralbl Gynakol. 1984;106(9):573-84.
Tavares RS, Martins FC, Oliveira PJ, Ramalho-Santos J, Peixoto FP. Parabens in male infertility – Is there a mitochondrial connection? Reprod Toxicol. 2009;27(1):1-7.
Toppari J, Larsen JC, Christiansen P, et al. Male reproductive health and environmental xenoestrogens. Environ Health Perspect. 1996;104 Suppl 4:741-803.
Hengstler JG, Foth H, Gebel T, et al. Critical evaluation of key evidence on the human health hazards of exposure to bisphenol A. Crit Rev Toxicol. 2011;41(4):263-91.
Michaels D. Doubt is their product. Scientific American. 2005;292:96-101.