2013, Número 1
Siguiente >>
TIP Rev Esp Cienc Quim Biol 2013; 16 (1)
Identification of areas of endemism from species distribution models: Threshold selection and Nearctic mammals
Escalante T, Rodríguez-Tapia G, Linaje M, Illoldi-Rangel P, González-López R
Idioma: Ingles.
Referencias bibliográficas: 45
Paginas: 5-17
Archivo PDF: 447.28 Kb.
RESUMEN
Evaluamos la relevancia de la selección del umbral en los modelos de distribución de especies en la
delimitación de las áreas de endemismo, usando como un caso de estudio a los mamíferos de América del Norte.
Modelamos 40 especies de mamíferos endémicos de la región Neártica con Maxent, y transformamos esos
modelos a mapas binarios usando cuatro umbrales diferentes: presencia mínima de entrenamiento, percentil
diez de la presencia de entrenamiento, igual sensibilidad y especificidad de entrenamiento, y probabilidad
logística de 0.5. Los mapas binarios los analizamos con el método de optimación con el objeto de identificar
áreas de endemismo y comparar nuestros resultados con estudios previos. La mayoría de las especies mostró
tendencias hacia valores muy bajos de la presencia mínima de entrenamiento, mientras que la mayoría tuvo
un valor del percentil diez de la presencia de entrenamiento alrededor de 0.5, y de igual sensibilidad y
especificidad de entrenamiento alrededor de 0.3. Únicamente con el percentil diez de la presencia de
entrenamiento se recuperaron tres de los cuatro patrones de endemismo identificados para América del Norte
y se detectaron más especies endémicas. La identificación de áreas de endemismo más eficiente se obtuvo
usando el umbral del percentil diez de la presencia de entrenamiento, el cual parece recuperar mejor las áreas
de distribución de los mamíferos analizados.
REFERENCIAS (EN ESTE ARTÍCULO)
Ramírez-Barahona, S., Torres-Miranda, A., Palacios-Ríos, M. & Luna-Vega, I. Historical biogeography of the Yucatan Peninsula, Mexico: a perspective from ferns (Monilophyta) and lycopods (Lycophyta). Biol. J. Linn. Soc. 98, 775-786 (2009).
Espadas-Manrique, C., Durán, R. & Argáez, J. Phytogeographic analysis of taxa endemic to the Yucatan Peninsula using geographic information systems, the domain heuristic method and parsimony analysis of endemicity. Divers. Distrib. 9, 313- 330 (2003).
Rojas-Soto, O.R., Alcántara-Ayala, O. & Navarro, A.G. Regionalization of the avifauna of the Baja California Peninsula, Mexico: A parsimony analysis of endemicity and distributional modeling approach. J. Biogeogr. 30, 449-461 (2003).
Escalante, T., Sánchez-Cordero, V., Morrone, J.J. & Linaje, M. Areas of endemism of Mexican terrestrial mammals: A case study using species' ecological niche modeling, Parsimony Analysis of Endemicity and Goloboff fit. Interciencia 32, 151-159 (2007).
Escalante, T. et al. Ecological niche models and patterns of richness and endemism of the southern Andean genus Eurymetopum (Coleoptera: Cleridae). Rev. Bras. Entomol.53, 379-385 (2009).
Escalante, T., Szumik, C. & Morrone, J.J. Areas of endemism of Mexican mammals: Re-analysis applying the optimality criterion. Biol. J. Linn. Soc. 98, 468-478 (2009).
Pearson, R.P. et al. Model-based uncertainty in species range prediction. J. Biogeogr. 33, 1704-1711 (2006).
Elith, J. et al. Novel methods improve prediction of species' distributions from occurrence data. Ecography 29, 129-151 (2006).
Pliscoff, P. & Fuentes-Castillo, T. Modelación de la distribución de especies y ecosistemas en el tiempo y en el espacio: una revisión de las nuevas herramientas y enfoques disponibles. Rev. Geogr. Norte Gd. 48, 61-79 (2011).
Phillips, S.J., Anderson, R.P. & Schapire, R.E. A maximum entropy modelling of species geographic distributions. Ecol. Model. 190, 231-259 (2006).
Phillips, S.J. & Dudík, M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31, 161-175 (2008).
Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43-57 (2011).
Liu, C., Berry, M., Dawson, T.P. & Pearson, R.G. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28, 385-393 (2005).
Pawar, S. et al. Conservation assessment and prioritization of areas in Northeast India: Priorities for amphibians and reptiles. Biol. Conserv. 136, 346-361 (2007).
Manel, S., Williams, H.C. & Omerod, D.J. Evaluating presenceabsence models in ecology: The need to account for prevalence. J. Appl. Ecol. 38, 921-931 (2001).
Jiménez-Valverde, A. & Lobo, J.M. Threshold criteria for conversion of probability of species presence to either-or presenceabsence. Acta Oecol. 31, 361-369 (2007).
Freeman, E.A. & Moisen, G.G. A comparison of the performance of threshold criteria for binary classification in terms of predicted prevalence and kappa. Ecol. Model. 217, 48-58 (2008).
Pearson, R.G., Raxworthy, C.J., Nakamura, M. & Peterson, T. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J. Biogeogr. 34, 102-117 (2007).
Aranda, S.D. & Lobo, J.M. How well does presence-only-based species distribution modelling predict assemblage diversity? A case study of the Tenerife flora. Ecography 34, 31-38 (2011).
Bean, W.T., Stafford, R. & Brashares, J.S. The effects of small sample size and sample bias on threshold selection and accuracy assessment of species distribution model. Ecography 35, 250- 258 (2012).
Morrone, J.J. Evolutionary biogeography: An integrative approach with case studies (Columbia University Press, New York, 2009). 301 pp.
Morrone, J.J. On the identification of areas of endemism. Syst. Biol. 43, 438-441. (1994).
Escalante, T. Un ensayo sobre regionalización biogeográfica. Rev. Mex. Biodivers. 80, 551-560 (2009).
Szumik, C.A., Cuezzo, F., Goloboff, P.A. & Chalup, A.E. An optimality criterion to determine areas of endemism. Syst. Biol. 51, 806-816 (2002).
Szumik, C.A. & Goloboff, P.A. Areas of endemism: An improved optimality criterion. Syst. Biol. 53, 968-977 (2004).
Estrada, Y.-Q., Luna, R.A. & Escalante, T. Patrones de distribución de los mamíferos en la provincia Oaxaca-Tehuacanense, México. Therya 3, 33-51 (2012).
Escalante, T., Rodríguez-Tapia, G., Szumik, C., Morrone, J.J. & Rivas, M. Delimitation of the Nearctic region according to mammalian distributional patterns. J. Mammal. 91, 1381-1388 (2010).
Arita, H.T. & Rodríguez, G. Patrones geográficos de diversidad de los mamíferos terrestres de América del Norte. Instituto de Ecología, UNAM. SNIB-Conabio database, project Q068 (2004).
ESRI. ArcGis v. 9.3. Redlands, CA. (2009).
Hall, E.R. The mammals of North America. Vols. I and II (John Wiley and Sons, New York, 1981). 1181 pp.
Ceballos, G. & Oliva, G. Los mamíferos silvestres de México (Comisión Nacional para el Conocimiento y Uso de la Biodiversidad - Fondo de Cultura Económica, México, D.F., 2005). 986 pp.
Hijmans, R.J., Cameron, S. & Parra, J. WorldClim v. 1.3. University of California, Berkeley (http://biogeo.berkeley.edu/worldclim/ worldclim.htm) (2005).
Papes, M. & Gaubert, P. Modelling ecological niches from low numbers of occurrences: assessment of the conservation status of poorly known viverrids (Mammalia, Carnivora) across two continents. Divers. Distrib. 13, 890-902 (2007).
Loiselle, B.A. et al. Predicting species distributions from herbarium collections: does climate bias in collection sampling influence model outcomes. J. Biogeogr. 35, 105-116 (2008).
Waltari, E. & Guralnick, R.P. Ecological niche modeling of montane mammals in the Great Basin, North America: examining past and present connectivity of species across basins and ranges. J. Biogeogr. 36, 148-161 (2009).
Costa, G.C., Nogueira, C., Machado, R.B. & Colli, G.R. Sampling bias and the use of ecological niche modeling in conservation planning: A field evaluation in a biodiversity hotspot. Biodivers. Conserv. 19, 883-899 (2009).
Brito, J.C., Acosta, A.L., Álvares, F. & Cuzin, F. Biogeography and conservation of taxa from remote regions: An application of ecological-niche based models and GIS to North-African canids. Biol. Conserv. 142, 3020-3029 (2009).
Newbold, T., Gilbert, F., Zalat, S., El-Gabbas, A. & Reader, T. Climate-based models of spatial patterns of species richness in Egypt's butterfly and mammal fauna. J. Biogeogr. 36, 2085- 2095 (2009).
Colacicco-Mayhugh, M.G., Masuoka, P.M. & Grieco, J.P. Ecological niche model of Phlebotomus alexandri and P. papatasi (Diptera: Psychodidae) in the Middle East. Int. J. Health Geogr. 9, 2-9 (2010).
Donegan, T.M. & Avendaño, J.E. A new subspecies of mountain tanager in the Anisognathus lacrymosus complex from the Yariguíes Mountains of Colombia. Bull. BOC 130, 13-32 (2010).
Giovanelli, J.G.R., Ferreira de Siqueira, M., Haddad, C.F.B. & Alexandrino, J. Modeling a spatially restricted distribution in the Neotropics: How the size of calibration area affects the performance of five presence-only methods. Ecol. Model. 221, 215-224 (2010).
Torres, R. & Jayat, J.P. Modelos predictivos de distribución para cuatro especies de mamíferos (Cingulata, Artiodactyla y Rodentia) típicas del Chaco en Argentina. Mastozoología Neotropical 17, 335-352 (2010).
Fielding, A.H. & Bell, J.F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24, 38-49 (1997).
Goloboff, P.A. Programs for identification of areas of endemism. http://www.zmuk.dk/public/phylogeny/endemism (2005).
Lobo, J.M., Jiménez-Valverde, A. & Real, R. AUC: A misleading measure of the performance of predictive distribution models. Global Ecol. Biogeogr. 17, 145-151 (2008).